A Better-Than-2 Approximation for Weighted Tree Augmentation

We present an approximation algorithm for Weighted Tree Augmentation with approximation factor 1+ln 2+ε < 1.7. This is the first algorithm beating the longstanding factor of 2, which can be achieved through many standard techniques. ∗This project received funding from Swiss National Science Foundation grant 200021 184622 and the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 817750). ‡Department of Mathematics, ETH Zurich, Zurich, Switzerland. Email: vera.traub@ifor.math.ethz.ch. §Department of Mathematics, ETH Zurich, Zurich, Switzerland. Email: ricoz@ethz.ch. ar X iv :2 10 4. 07 11 4v 1 [ cs .D S] 1 4 A pr 2 02 1

[1]  Nimrod Megiddo,et al.  Combinatorial optimization with rational objective functions , 1978, Math. Oper. Res..

[2]  Joseph Cheriyan,et al.  Approximating (Unweighted) Tree Augmentation via Lift-and-Project, Part I: Stemless TAP , 2015, Algorithmica.

[3]  Guy Kortsarz,et al.  A Simplified 1.5-Approximation Algorithm for Augmenting Edge-Connectivity of a Graph from 1 to 2 , 2015, ACM Trans. Algorithms.

[4]  Zoltán Szigeti,et al.  Improving on the 1.5-Approximation of a Smallest 2-Edge Connected Spanning Subgraph , 2001, SIAM J. Discret. Math..

[5]  Fabrizio Grandoni,et al.  Improved approximation for tree augmentation: saving by rewiring , 2018, STOC.

[6]  Hiroshi Nagamochi,et al.  An approximation for finding a smallest 2-edge-connected subgraph containing a specified spanning tree , 1999, Discret. Appl. Math..

[7]  Nachshon Cohen,et al.  A (1 + ln 2)-Approximation Algorithm for Minimum-Cost 2-Edge-Connectivity Augmentation of Trees with Constant Radius , 2011, APPROX-RANDOM.

[8]  Robert Krauthgamer,et al.  Hardness of Approximation for Vertex-Connectivity Network Design Problems , 2002, SIAM J. Comput..

[9]  Adrian Vetta,et al.  A 4/3-Approximation Algorithm for the Minimum 2-Edge Connected Subgraph Problem , 2019, ACM Trans. Algorithms.

[10]  R. Ravi,et al.  On 2-Coverings and 2-Packings of Laminar Families , 1999, ESA.

[11]  Samir Khuller,et al.  Biconnectivity approximations and graph carvings , 1992, STOC '92.

[12]  David P. Williamson,et al.  A general approximation technique for constrained forest problems , 1992, SODA '92.

[13]  Jochen Könemann,et al.  Approximating Weighted Tree Augmentation via Chvátal-Gomory Cuts , 2018, SODA.

[14]  R. Ravi,et al.  Coloring Down: $3/2$-approximation for special cases of the weighted tree augmentation problem , 2017, Oper. Res. Lett..

[15]  Zeev Nutov,et al.  On the Tree Augmentation Problem , 2017, Algorithmica.

[16]  David Adjiashvili,et al.  Beating Approximation Factor Two for Weighted Tree Augmentation with Bounded Costs , 2017, SODA.

[17]  Joseph JáJá,et al.  Approximation Algorithms for Several Graph Augmentation Problems , 1981, SIAM J. Comput..

[18]  Zeev Nutov Approximation algorithms for connectivity augmentation problems , 2020, ArXiv.

[19]  Jon Feldman,et al.  A 1.8 approximation algorithm for augmenting edge-connectivity of a graph from 1 to 2 , 2009, TALG.

[20]  Samir Khuller,et al.  Approximation Algorithms for Graph Augmentation , 1992, ICALP.

[21]  Jens Vygen,et al.  Shorter tours by nicer ears: 7/5-approximation for the graph-TSP, 3/2 for the path version, and 4/3 for two-edge-connected subgraphs , 2012, ArXiv.

[22]  David P. Williamson,et al.  The Design of Approximation Algorithms , 2011 .

[23]  Kamal Jain,et al.  A Factor 2 Approximation Algorithm for the Generalized Steiner Network Problem , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).

[24]  Joseph Cheriyan,et al.  Approximating (Unweighted) Tree Augmentation via Lift-and-Project, Part II , 2017, Algorithmica.

[25]  A. Zelikovsky Better approximation bounds for the network and Euclidean Steiner tree problems , 1996 .

[26]  Andrew V. Goldberg,et al.  Improved approximation algorithms for network design problems , 1994, SODA '94.

[27]  A. Frank,et al.  An application of submodular flows , 1989 .

[28]  Jochen Könemann,et al.  On the integrality ratio for tree augmentation , 2008, Oper. Res. Lett..

[29]  Vera Traub,et al.  Bridging the Gap Between Tree and Connectivity Augmentation: Unified and Stronger Approaches , 2020, ArXiv.

[30]  Guy Kortsarz,et al.  LP-relaxations for tree augmentation , 2018, Discret. Appl. Math..

[31]  Fabrizio Grandoni,et al.  Breaching the 2-approximation barrier for connectivity augmentation: a reduction to Steiner tree , 2019, STOC.