A Study of Well-composedness in n-D. (Une étude du bien-composé en dimension n)

Digitization of the real world using real sensors has many drawbacks; in particular, we loose ``well-composedness'' in the sense that two digitized objects can be connected or not depending on the connectivity we choose in the digital image, leading then to ambiguities. Furthermore, digitized images are arrays of numerical values, and then do not own any topology by nature, contrary to our usual modeling of the real world in mathematics and in physics. Loosing all these properties makes difficult the development of algorithms which are ``topologically correct'' in image processing: e.g., the computation of the tree of shapes needs the representation of a given image to be continuous and well-composed; in the contrary case, we can obtain abnormalities in the final result. Some well-composed continuous representations already exist, but they are not in the same time n-dimensional and self-dual. n-dimensionality is crucial since usual signals are more and more 3-dimensional (like 2D videos) or 4-dimensional (like 4D Computerized Tomography-scans), and self-duality is necessary when a same image can contain different objects with different contrasts. We developed then a new way to make images well-composed by interpolation in a self-dual way and in n-D; followed with a span-based immersion, this interpolation becomes a self-dual continuous well-composed representation of the initial n-D signal. This representation benefits from many strong topological properties: it verifies the intermediate value theorem, the boundaries of any threshold set of the representation are disjoint union of discrete surfaces, and so on

[1]  Serge Beucher,et al.  The Morphological Approach to Segmentation: The Watershed Transformation , 2018, Mathematical Morphology in Image Processing.

[2]  Yongchao Xu,et al.  Morphology-based hierarchical representation with application to text segmentation in natural images , 2016, 2016 23rd International Conference on Pattern Recognition (ICPR).

[3]  Laurent Najman,et al.  About the equivalence between AWCness and DWCness , 2016 .

[4]  Séverine Dubuisson,et al.  TextCatcher: a method to detect curved and challenging text in natural scenes , 2016, International Journal on Document Analysis and Recognition (IJDAR).

[5]  Jean Paul Frédéric Serra,et al.  Digitization of Partitions and Tessellations , 2016, DGCI.

[6]  Rocío González-Díaz,et al.  Encoding Specific 3D Polyhedral Complexes Using 3D Binary Images , 2016, DGCI.

[7]  Numerical methods for partial differential equations , 2016 .

[8]  Xiang Bai,et al.  Scene text detection and recognition: recent advances and future trends , 2015, Frontiers of Computer Science.

[9]  Jiri Matas,et al.  FASText: Efficient Unconstrained Scene Text Detector , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[10]  David S. Doermann,et al.  Text Detection and Recognition in Imagery: A Survey , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[11]  Thierry Géraud,et al.  Self-duality and Digital Topology: Links Between the Morphological Tree of Shapes and Well-Composed Gray-Level Images , 2015, ISMM.

[12]  Laurent Najman,et al.  How to Make nD Functions Digitally Well-Composed in a Self-dual Way , 2015, ISMM.

[13]  Punam K. Saha,et al.  Digital Topology and Geometry in Medical Imaging: A Survey , 2015, IEEE Transactions on Medical Imaging.

[14]  Rocío González-Díaz,et al.  3D well-composed polyhedral complexes , 2015, Discret. Appl. Math..

[15]  Thierry Géraud,et al.  A first parallel algorithm to compute the morphological tree of shapes of nD images , 2014, 2014 IEEE International Conference on Image Processing (ICIP).

[16]  Laurent Najman,et al.  On Making nD Images Well-Composed by a Self-dual Local Interpolation , 2014, DGCI.

[17]  Hugues Talbot,et al.  Topology-Preserving Rigid Transformation of 2D Digital Images , 2014, IEEE Transactions on Image Processing.

[18]  Li Chen,et al.  Algorithms for Computing Topological Invariants in 2D and 3D Digital Spaces , 2013, ArXiv.

[19]  J. H. Sossa-Azuela,et al.  Computing the Euler Number of a Binary Image Based on a Vertex Codification , 2013 .

[20]  Laurent Najman,et al.  Discrete Set-Valued Continuity and Interpolation , 2013, ISMM.

[21]  Yongchao Xu,et al.  Two Applications of Shape-Based Morphology: Blood Vessels Segmentation and a Generalization of Constrained Connectivity , 2013, ISMM.

[22]  Hugues Talbot,et al.  Combinatorial structure of rigid transformations in 2D digital images , 2013, Comput. Vis. Image Underst..

[23]  Hugues Talbot,et al.  Sufficient Conditions for Topological Invariance of 2D Images under Rigid Transformations , 2013, DGCI.

[24]  Hugues Talbot,et al.  Well-composed images and rigid transformations , 2013, 2013 IEEE International Conference on Image Processing.

[25]  Rocio Gonzalez-Diaz,et al.  Discrete Geometry for Computer Imagery , 2013, Lecture Notes in Computer Science.

[26]  Tao Wang,et al.  End-to-end text recognition with convolutional neural networks , 2012, Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012).

[27]  Yongchao Xu,et al.  Context-based energy estimator: Application to object segmentation on the tree of shapes , 2012, 2012 19th IEEE International Conference on Image Processing.

[28]  Valerio Pascucci,et al.  Topology Verification for Isosurface Extraction , 2012, IEEE Transactions on Visualization and Computer Graphics.

[29]  Yongchao Xu,et al.  Morphological filtering in shape spaces: Applications using tree-based image representations , 2012, Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012).

[30]  Michel Couprie,et al.  Digital Imaging: A Unified Topological Framework , 2011, Journal of Mathematical Imaging and Vision.

[31]  Christof Koch,et al.  AdaBoost for Text Detection in Natural Scene , 2011, 2011 International Conference on Document Analysis and Recognition.

[32]  Andrew Y. Ng,et al.  Text Detection and Character Recognition in Scene Images with Unsupervised Feature Learning , 2011, 2011 International Conference on Document Analysis and Recognition.

[33]  Nicolas Passat,et al.  Topology Preserving Warping of 3-D Binary Images According to Continuous One-to-One Mappings , 2011, IEEE Transactions on Image Processing.

[34]  Brian B. Avants,et al.  Topological Well-Composedness and Glamorous Glue: A Digital Gluing Algorithm for Topologically Constrained Front Propagation , 2011, IEEE Transactions on Image Processing.

[35]  Rocío González-Díaz,et al.  Cup Products on Polyhedral Approximations of 3D Digital Images , 2011, IWCIA.

[36]  Rocío González-Díaz,et al.  Well-Composed Cell Complexes , 2011, DGCI.

[37]  Enric Meinhardt Llopis Morphological and statistical techniques for the analysis of 3D images , 2011 .

[38]  M. Jiménez,et al.  Cubical cohomology ring of 3D photographs , 2011, International journal of imaging systems and technology (Print).

[39]  Loïc Mazo Déformations homotopiques dans les images digitales n-aires. (Homotopic deformations in n-ary digital images) , 2011 .

[40]  Laurent Najman,et al.  Why and howto design a generic and efficient image processing framework: The case of the Milena library , 2010, 2010 IEEE International Conference on Image Processing.

[41]  Laurent Najman,et al.  Writing Reusable Digital Topology Algorithms in a Generic Image Processing Framework , 2010, WADGMM.

[42]  Jerry L. Prince,et al.  Digital Topology in Brain Imaging , 2010, IEEE Signal Processing Magazine.

[43]  Yonatan Wexler,et al.  Detecting text in natural scenes with stroke width transform , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[44]  Li Chen Genus Computing for 3D digital objects: algorithm and implementation , 2009, ArXiv.

[45]  V. Caselles,et al.  Geometric Description of Images as Topographic Maps , 2009 .

[46]  Herbert Edelsbrunner,et al.  Computational Topology - an Introduction , 2009 .

[47]  Gilles Bertrand,et al.  Uniqueness of the Perfect Fusion Grid on ℤd , 2009, Journal of Mathematical Imaging and Vision.

[48]  Hiroyuki Yoshida,et al.  Fundamentals of Three-dimensional Digital Image Processing , 2009 .

[49]  Selangor Darul Ehsan,et al.  A Real-Time Malaysian Automatic License Plate Recognition (M-ALPR) using Hybrid Fuzzy , 2009 .

[50]  Rocío González-Díaz,et al.  Cohomology Ring of 3D Cubical Complexes , 2009, IWCIA Special Track on Applications.

[51]  Maximilian Kreuzer,et al.  Geometry, Topology and Physics I , 2009 .

[52]  Luminita A. Vese,et al.  Self-Repelling Snakes for Topology-Preserving Segmentation Models , 2008, IEEE Transactions on Image Processing.

[53]  Florent Ségonne,et al.  Active Contours Under Topology Control—Genus Preserving Level Sets , 2008, International Journal of Computer Vision.

[54]  Peer Stelldinger,et al.  Image digitization and its influence on shape properties in finite dimensions , 2008, Ausgezeichnete Informatikdissertationen.

[55]  James C. Gee,et al.  Topological Repairing of 3D Digital Images , 2008, Journal of Mathematical Imaging and Vision.

[56]  Pierre-Louis Bazin,et al.  Digital Homeomorphisms in Deformable Registration , 2007, IPMI.

[57]  Anthony J. Yezzi,et al.  Global Regularizing Flows With Topology Preservation for Active Contours and Polygons , 2007, IEEE Transactions on Image Processing.

[58]  Peer Stelldinger,et al.  Topological Equivalence between a 3D Object and the Reconstruction of Its Digital Image , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[59]  Isabelle Bloch,et al.  Mathematical Morphology , 2007, Handbook of Spatial Logics.

[60]  Peer Stelldinger,et al.  Topology Preserving Digitization with FCC and BCC Grids , 2006, IWCIA.

[61]  Gilles Bertrand,et al.  Grayscale Watersheds on Perfect Fusion Graphs , 2006, IWCIA.

[62]  Peer Stelldinger,et al.  3D Object Digitization: Majority Interpolation and Marching Cubes , 2006, 18th International Conference on Pattern Recognition (ICPR'06).

[63]  Gilles Bertrand,et al.  Discrete Surfaces and Frontier Orders , 2005, Journal of Mathematical Imaging and Vision.

[64]  R. González-Díaz,et al.  On the cohomology of 3D digital images , 2005, Discret. Appl. Math..

[65]  Peer Stelldinger,et al.  Towards a general sampling theory for shape preservation , 2005, Image Vis. Comput..

[66]  Longin Jan Latecki,et al.  Making 3D binary digital images well-composed , 2005, IS&T/SPIE Electronic Imaging.

[67]  F. Santosa,et al.  A Topology-Preserving Level Set Method for Shape Optimization , 2004, math/0405142.

[68]  Xavier Daragon,et al.  Surfaces discrètes et frontières d’objets dans les ordres , 2005 .

[69]  C. Fiorio A Topologically Consistent Representation for Image Analysis : The Frontiers Topological Graph , 2005 .

[70]  Pascal Monasse,et al.  Grain Filters , 2002, Journal of Mathematical Imaging and Vision.

[71]  Christopher Conrad,et al.  Preserving Topology by a Digitization Process , 1998, Journal of Mathematical Imaging and Vision.

[72]  Ralph Kopperman,et al.  Dimensional properties of graphs and digital spaces , 1996, Journal of Mathematical Imaging and Vision.

[73]  Zdzisław Denkowski,et al.  Set-Valued Analysis , 2021 .

[74]  Rocío González-Díaz,et al.  Towards Digital Cohomology , 2003, DGCI.

[75]  Michel Couprie,et al.  Watershed Algorithms and Contrast Preservation , 2003, DGCI.

[76]  Gian Luca Foresti,et al.  Real-time thresholding with Euler numbers , 2003, Pattern Recognit. Lett..

[77]  Xiao Han,et al.  A Topology Preserving Level Set Method for Geometric Deformable Models , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[78]  Pierre Soille,et al.  Morphological Image Analysis: Principles and Applications , 2003 .

[79]  V. Caselles,et al.  The Tree of Shapes of an Image , 2003 .

[80]  Pierre Soille,et al.  Advances in mathematical morphology applied to geoscience and remote sensing , 2002, IEEE Trans. Geosci. Remote. Sens..

[81]  Gilles Bertrand,et al.  Marching Chains algorithm for Alexandroff-Khalimsky spaces , 2002, SPIE Optics + Photonics.

[82]  Tao Ju,et al.  Dual contouring of hermite data , 2002, ACM Trans. Graph..

[83]  Christian Ronse Flat Morphological Operatorson Arbitrary Power Lattices , 2002, Theoretical Foundations of Computer Vision.

[84]  Xiao Han,et al.  A topology preserving deformable model using level sets , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[85]  Isabelle Bloch,et al.  A cellular model for multi-objects multi-dimensional homotopic deformations , 2001, Pattern Recognit..

[86]  Jitendra Malik,et al.  A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[87]  Herbert Edelsbrunner,et al.  Geometry and Topology for Mesh Generation , 2001, Cambridge monographs on applied and computational mathematics.

[88]  J. L. Bryant Piecewise Linear Topology , 2001 .

[89]  Jacques-Olivier Lachaud,et al.  Continuous Analogs of Digital Boundaries: A Topological Approach to Iso-Surfaces , 2000, Graph. Model..

[90]  Pascal Monasse,et al.  Fast computation of a contrast-invariant image representation , 2000, IEEE Trans. Image Process..

[91]  Mohamed Tajine,et al.  Topological Properties of Hausdorff Discretizations , 2000, ISMM.

[92]  John M. Lee Introduction to Topological Manifolds , 2000 .

[93]  Jos B. T. M. Roerdink,et al.  The Watershed Transform: Definitions, Algorithms and Parallelization Strategies , 2000, Fundam. Informaticae.

[94]  W. B. R. Lickorish Simplicial moves on complexes and manifolds , 1999 .

[95]  Petros Maragos,et al.  Morphological Scale-Space Representation with Levelings , 1999, Scale-Space.

[96]  Gilles Bertrand,et al.  New Notions for Discrete Topology , 1999, DGCI.

[97]  Yann Cuintepas Modélisation homotopique et segmentation tridimensionnelles du cortex cérébral à partir d'irm pour la résolution des problèmes directs et inverses en eeg et en meg , 1999 .

[98]  Jean-Francois Mangin,et al.  Robust Brain Segmentation Using Histogram Scale-Space Analysis and Mathematical Morphology , 1998, MICCAI.

[99]  Ching Y. Suen,et al.  Veinerization: A New Shape Description for Flexible Skeletonization , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[100]  Tamal K. Dey,et al.  Computing homology groups of simplicial complexes in R3 , 1998, JACM.

[101]  Luc Brun,et al.  Image Segmentation with Topological Maps and Inter-pixel Representation , 1998, J. Vis. Commun. Image Represent..

[102]  Azriel Rosenfeld,et al.  Topology-Preserving Deformations of Two-Valued Digital Pictures , 1998, Graph. Model. Image Process..

[103]  Longin Jan Latecki Discrete Representation of Spatial Objects in Computer Vision , 1998, Computational Imaging and Vision.

[104]  Prabir Bhattacharya,et al.  Digital Connectivity and Extended Well-Composed Sets for Gray Images , 1997, Comput. Vis. Image Underst..

[105]  Gilles Bertrand,et al.  Image segmentation through operators based on topology , 1997, J. Electronic Imaging.

[106]  Ethan D. Bloch A First Course in Geometric Topology and Differential Geometry , 1996 .

[107]  Roni Yagel,et al.  Octree-based decimation of marching cubes surfaces , 1996, Proceedings of Seventh Annual IEEE Visualization '96.

[108]  Gilles Bertrand,et al.  Topological approach to image segmentation , 1996, Optics & Photonics.

[109]  Gilles Bertrand,et al.  A Boolean characterization of three-dimensional simple points , 1996, Pattern Recognition Letters.

[110]  Juan Humberto Sossa Azuela,et al.  On the computation of the Euler number of a binary object , 1996, Pattern Recognit..

[111]  Christophe Fiorio,et al.  Approche interpixel en analyse d'images : une topologie et des algorithmes de segmentation. (Inter pixel approach in image analysis: a topology and segmentation algorithms) , 1995 .

[112]  Isabelle Bloch,et al.  Segmenting internal structures in 3D MR images of the brain by Markovian relaxation on a watershed based adjacency graph , 1995, Proceedings., International Conference on Image Processing.

[113]  Longin Jan Latecki 3D well-composed pictures , 1995, Optics & Photonics.

[114]  Philippe Salembier,et al.  Flat zones filtering, connected operators, and filters by reconstruction , 1995, IEEE Trans. Image Process..

[115]  Longin Jan Latecki,et al.  Well-Composed Sets , 1995, Comput. Vis. Image Underst..

[116]  Longin Jan Latecki,et al.  Digitizations preserving topological and differential geometric properties , 1995, Other Conferences.

[117]  Longin Jan Latecki Multicolor well-composed pictures , 1995, Other Conferences.

[118]  Gilles Bertrand,et al.  Simple points, topological numbers and geodesic neighborhoods in cubic grids , 1994, Pattern Recognit. Lett..

[119]  Laurent Najman,et al.  Watershed of a continuous function , 1994, Signal Process..

[120]  Longin Jan Latecki,et al.  Digital Topology , 1994 .

[121]  Ralph Kopperman,et al.  The Khalimsky Line as a Foundation for Digital Topology , 1994 .

[122]  Gilles Bertrand,et al.  A new characterization of three-dimensional simple points , 1994, Pattern Recognition Letters.

[123]  H. Heijmans Morphological image operators , 1994 .

[124]  Gabor T. Herman,et al.  Discrete multidimensional Jordan surfaces , 1992, CVGIP Graph. Model. Image Process..

[125]  K. Voss,et al.  Images, Objects, and Surfaces in Zn , 1991, Int. J. Pattern Recognit. Artif. Intell..

[126]  Azriel Rosenfeld,et al.  Winding and Euler numbers for 2D and 3D digital images , 1991, CVGIP Graph. Model. Image Process..

[127]  Ralph Kopperman,et al.  A Jordan surface theorem for three-dimensional digital spaces , 1991, Discret. Comput. Geom..

[128]  Henk J. A. M. Heijmans,et al.  Theoretical Aspects of Gray-Level Morphology , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[129]  Azriel Rosenfeld,et al.  Digital surfaces , 1991, CVGIP Graph. Model. Image Process..

[130]  P. R. Meyer,et al.  Computer graphics and connected topologies on finite ordered sets , 1990 .

[131]  Azriel Rosenfeld,et al.  If we use 4- or 8-connectedness for both the objects and the background, the Euler characteristics is not locally computable , 1990, Pattern Recognition Letters.

[132]  Azriel Rosenfeld,et al.  Digital topology: Introduction and survey , 1989, Comput. Vis. Graph. Image Process..

[133]  Vladimir A. Kovalevsky,et al.  Finite topology as applied to image analysis , 1989, Comput. Vis. Graph. Image Process..

[134]  F. Meyer Skeletons and perceptual graphs , 1989 .

[135]  S. Sengupta,et al.  Intelligent shape recognition for complex industrial tasks , 1988, IEEE Control Systems Magazine.

[136]  Lawrence N. Stout Two discrete forms of the Jordan curve theorem , 1988 .

[137]  Elon L. Lima The Jordan-Brouwer separation theorem for smooth hypersurfaces , 1988 .

[138]  Ian T. Young,et al.  An edge detection model based on non-linear Laplace filtering , 1988 .

[139]  William E. Lorensen,et al.  Marching cubes: A high resolution 3D surface construction algorithm , 1987, SIGGRAPH.

[140]  Wolfram H. H. J. Lunscher,et al.  Fast binary-image boundary extraction , 1987, Comput. Vis. Graph. Image Process..

[141]  Peter R. Wilson Euler Formulas and Geometric Modeling , 1985, IEEE Computer Graphics and Applications.

[142]  Hanspeter Bieri,et al.  Algorithms for the euler characteristic and related additive functionals of digital objects , 1984, Comput. Vis. Graph. Image Process..

[143]  R.M. McElhaney,et al.  Algorithms for graphics and image processing , 1983, Proceedings of the IEEE.

[144]  Azriel Rosenfeld,et al.  Digital connectedness: An algebraic approach , 1983, Pattern Recognit. Lett..

[145]  Azriel Rosenfeld,et al.  On connectivity properties of grayscale pictures , 1981, Pattern Recognit..

[146]  Carlo Arcelli,et al.  Pattern thinning by contour tracing , 1981 .

[147]  Gabor T. Herman,et al.  The theory, design, implementation and evaluation of a three-dimensional surface detection algorithm , 1980, SIGGRAPH '80.

[148]  C. Dyer Computing the Euler number of an image from its quadtree , 1980 .

[149]  David Lutzer,et al.  ORDERED TOPOLOGICAL SPACES , 1980 .

[150]  H. Tverberg A Proof of the Jordan Curve Theorem , 1980 .

[151]  S. Beucher Use of watersheds in contour detection , 1979 .

[152]  Azriel Rosenfeld,et al.  Picture languages: Formal models for picture recognition , 1979 .

[153]  Azriel Rosenfeld,et al.  Fuzzy Digital Topology , 1979, Inf. Control..

[154]  Fred Richman,et al.  The constructive Jordan curve theorem , 1975 .

[155]  T. Fukumura,et al.  An Analysis of Topological Properties of Digitized Binary Pictures Using Local Features , 1975 .

[156]  Azriel Rosenfeld,et al.  Adjacency in Digital Pictures , 1974, Inf. Control..

[157]  Azriel Rosenfeld,et al.  Arcs and Curves in Digital Pictures , 1973, JACM.

[158]  Stephen B. Gray,et al.  Local Properties of Binary Images in Two Dimensions , 1971, IEEE Transactions on Computers.

[159]  John Mylopoulos,et al.  On the Topological Properties of Quantized Spaces, II. Connectivity and Order of Connectivity , 1971, JACM.

[160]  John Mylopoulos,et al.  On the Topological Properties of Quantized Spaces, I. The Notion of Dimension , 1971, JACM.

[161]  E. Khalimsky,et al.  Applications of connected ordered topological spaces in topology , 1970 .

[162]  Azriel Rosenfeld,et al.  Connectivity in Digital Pictures , 1970, JACM.

[163]  Marvin Minsky,et al.  Perceptrons: An Introduction to Computational Geometry , 1969 .

[164]  Azriel Rosenfeld,et al.  Sequential Operations in Digital Picture Processing , 1966, JACM.

[165]  Peter E. Hart,et al.  GRAPHICAL-DATA-PROCESSING RESEARCH STUDY AND EXPERIMENTAL INVESTIGATION , 1964 .

[166]  P. A. Smith Review: M. H. A. Newman, Elements of the Topology of Plane Sets of Points , 1939 .

[167]  H. Hopf,et al.  Topologie I: Erster Band. Grundbegriffe der Mengentheoretischen Topologie Topologie der Komplexe · Topologische Invarianzsätze und Anschliessende Begriffsbildungen · Verschlingungen im n-Dimensionalen Euklidischen Raum Stetige Abbildungen von Polyedern , 1935 .

[168]  E. R. Kampen Komplexe in euklidischen Räumen , 1933 .

[169]  J. W. Alexander,et al.  The Combinatorial Theory of Complexes , 1930 .

[170]  C. Kuratowski Sur le problème des courbes gauches en Topologie , 1930 .

[171]  J. W. Alexander,et al.  A proof and extension of the Jordan-Brouwer separation theorem , 1922 .