Stress-induced dislocations in silicon integrated circuits

Many of the processes used in the fabrication of silicon integrated circuits lead to the development of stress in the silicon substrate. Given enough stress, the substrate will yield by generating dislocations. We examine the formation of stress-induced dislocations in integrated circuit structures. Examples are presented from bipolar and MOS-based integrated circuit structures that were created during developmental studies. The underlying causes of oxidation-induced stress and the effect on such stress of varying oxidation conditions are discussed. The knowledge thus gained is used to explain dislocation generation during the formation of a shallow-trench isolation structure. The importance of ion-implantation processes in nucleating dislocations is illustrated using structures formed by a deep-trench isolation process and a process used to form a trench capacitor in a DRAM cell. The effect of device layout geometry on dislocation generation is also examined. We show how TEM observations can be used to provide more information than solely identifying those process conditions under which dislocations are generated. By combining TEM observations with stress analysis, we show how the sources of stress responsible for dislocation movement can be identified.

[1]  S. M. Hu,et al.  A method for finding critical stresses of dislocation movement , 1977 .

[2]  P. Sutardja,et al.  Modeling of stress-effects in silicon oxidation including the non-linear viscosity of oxide , 1987, 1987 International Electron Devices Meeting.

[3]  Krishna C. Saraswat,et al.  Two-dimensional thermal oxidation of silicon. II. Modeling stress effects in wet oxides , 1988 .

[4]  I. Kiryushin,et al.  Stresses in thin polycrystalline silicon films , 1988 .

[5]  B. E. Deal THERMAL OXIDATION KINETICS OF SILICON IN PYROGENIC WATER AND 5* HYDROGEN CHLORIDE WATER MIXTURES , 1978 .

[6]  C. Claeys,et al.  A theoretical study of the critical radius of precipitates and its application to silicon oxide in silicon , 1987 .

[7]  Charles W. Koburger,et al.  Oxidation-induced defect generation in advanced DRAM structures , 1990 .

[8]  Minseok Choi,et al.  Stress Effects in Boron‐Implanted Polysilicon Films , 1984 .

[9]  Yoichi Tamaki,et al.  Evaluation of Dislocation Generation in U‐Groove Isolation , 1988 .

[10]  Hirotsugu Kozuka,et al.  Dislocation Generation due to Stress Induced by Oxidation in Si Grooves , 1983 .

[11]  H. Eyring Viscosity, Plasticity, and Diffusion as Examples of Absolute Reaction Rates , 1936 .

[12]  S. M. Hu,et al.  Stress from isolation trenches in silicon substrates , 1990 .

[13]  Robert K. Mohr,et al.  Non‐Newtonian viscous flow in glass , 1982 .

[14]  R. B. Marcus,et al.  The Oxidation of Shaped Silicon Surfaces , 1982 .

[15]  R. B. Marcus,et al.  Gate Oxide Thinning at the Isolation Oxide Wall , 1978 .

[16]  T. F. Retajczyk,et al.  Effect of phosphorus doping on stress in silicon and polycrystalline silicon , 1983 .

[17]  R. Brückner,et al.  Properties and structure of vitreous silica. I , 1970 .

[18]  Bruce E. Deal,et al.  Kinetics of High Pressure Oxidation of Silicon in Pyrogenic Steam , 1981 .

[19]  D. W. Hess,et al.  KINETICS OF THE THERMAL OXIDATION OF SILICON IN OXYGEN-HYDROGEN CHLORIDE MIXTURES , 1977 .

[20]  Jan Vanhellemont,et al.  A Quantitative Model for Silicon Yield Stress Calculations at Thin Film Edges , 1988 .

[21]  T. Takemoto,et al.  Advanced VIST device technology , 1983, 1983 International Electron Devices Meeting.

[22]  L. Borucki,et al.  FEDSS: a 2D semiconductor fabrication process simulator , 1985 .

[23]  Donald R Uhlmann,et al.  The flow of glass at high stress levels. II. The effect of phase separation on viscosity , 1970 .

[24]  R. Dutton,et al.  Stresses in local oxidation , 1982, 1982 International Electron Devices Meeting.

[25]  S. R. Stiffler,et al.  Oxidation‐induced substrate strain in advanced silicon integrated‐circuit fabrication , 1990 .

[26]  A. E. Michel,et al.  Rapid annealing and the anomalous diffusion of ion implanted boron into silicon , 1987 .

[27]  L. Pauling The Nature Of The Chemical Bond , 1939 .

[28]  Daeje Chin,et al.  Two-dimensional oxidation , 1983, IEEE Transactions on Electron Devices.

[29]  H. Fukuda,et al.  Improvement of Dielectric Strength of Trench Capacitors by Using Rapidly Grown SiO2 Films , 1990 .

[30]  R. Howe,et al.  Stress in polycrystalline and amorphous silicon thin films , 1983 .

[31]  Robert W. Dutton,et al.  Plastic flow during thermal oxidation of silicon , 1989 .

[32]  S. J. Hillenius,et al.  Process limitation and device design tradeoffs of self-aligned TiSi/sub 2/ junction formation in submicrometer CMOS devices , 1991 .

[33]  S. Odanaka,et al.  Three-dimensional numerical simulation of local oxidation of silicon , 1991 .

[34]  Dah-Bin Kao,et al.  Two-dimensional silicon oxidation experiments and theory , 1985, 1985 International Electron Devices Meeting.

[35]  K. Yamabe,et al.  Nonplanar silicon oxidation in dry O2+NF3 , 1990 .

[36]  Yoichi Tamaki,et al.  Evaluation of Dislocation Generation in Silicon Substrates by Selective Oxidation of U‐Grooves , 1987 .

[37]  S. M. Hu,et al.  Effect of process parameters on stress development in two‐dimensional oxidation , 1988 .

[38]  Bruce E. Deal,et al.  Thermal Oxidation Kinetics of Silicon in Pyrogenic H 2 O and 5% HCl / H 2 O Mixtures , 1978 .

[39]  K. Tanaka,et al.  TEM analysis of failed bits and improvement of data retention properties in megabit-DRAMS , 1990, 28th Annual Proceedings on Reliability Physics Symposium.

[40]  A. S. Grove,et al.  General Relationship for the Thermal Oxidation of Silicon , 1965 .

[41]  Y. Taur,et al.  A variable-size shallow trench isolation (STL) technology with diffused sidewall doping for submicron CMOS , 1988, Technical Digest., International Electron Devices Meeting.

[42]  K.C. Saraswat,et al.  Formation of 0.1 µm N+/P and P+/N junctions by doped silicide technology , 1985, 1985 International Electron Devices Meeting.

[43]  Hugo Bender,et al.  On the homogeneous nucleation of dislocations during integrated-circuit processing , 1989 .

[44]  S. M. Hu,et al.  Stress‐related problems in silicon technology , 1991 .

[45]  K. Yamabe,et al.  Nonplanar oxidation and reduction of oxide leakage currents at silicon corners by rounding-off oxidation , 1987, IEEE Transactions on Electron Devices.

[46]  Takao Abe,et al.  Effects of nitrogen on dislocation behavior and mechanical strength in silicon crystals , 1983 .

[47]  Ian W. Boyd,et al.  Fluorine enhanced oxidation of silicon at low temperatures , 1994 .

[48]  Daeje Chin,et al.  A general solution method for two-dimensional nonplanar oxidation , 1983, IEEE Transactions on Electron Devices.

[49]  R. J. Saia,et al.  LOPOS: Advanced Device Isolation for a 0.8 μm CMOS/BULK Process Technology , 1989 .

[50]  N. S. Alvi,et al.  Simultaneous formation of silicide ohmic contacts and shallow p+-n junctions by ion-beam mixing and rapid thermal annealing , 1985, IEEE Electron Device Letters.

[51]  K. Ryoo,et al.  Location Effects of Extended Defects on Electrical Properties of p+‐n Junction , 1989 .

[52]  Robert W. Dutton,et al.  Supersaturation of self‐interstitials and undersaturation of vacancies during phosphorus diffusion in silicon , 1984 .

[53]  W. T. Lynch,et al.  A study of the leakage mechanisms of silicided n+/p junctions , 1988 .

[54]  William G. Oldham,et al.  Modeling of stress effects in silicon oxidation , 1989 .

[55]  C. S. Rafferty,et al.  A viscous nitride model for nitride/oxide isolation structures , 1990, International Technical Digest on Electron Devices.

[56]  R. J. Jaccodine,et al.  Fluorine‐Enhanced Oxidation of Silicon Effects of Fluorine on Oxide Stress and Growth Kinetics , 1991 .

[57]  H. Sumi,et al.  New silicidation technology by SITOX (silicidation through oxide) and its impact on sub-half micron MOS devices , 1990, International Technical Digest on Electron Devices.

[58]  O. Jaoul,et al.  Plasticité de la silice amorphe de part et ďautre de la transition vitreuse , 1985 .

[59]  S. Shinozaki,et al.  Oxidation rate reduction in the submicrometer LOCOS process , 1987, IEEE Transactions on Electron Devices.

[60]  K. Saraswat,et al.  Two-dimensional thermal oxidation of silicon—I. Experiments , 1987, IEEE Transactions on Electron Devices.

[61]  S. Timoshenko,et al.  Theory of Elasticity (3rd ed.) , 1970 .

[62]  D. B. Fraser,et al.  Factors Influencing the Acoustic Properties of Vitreous Silica , 1968 .

[63]  Takuzo Ogawa,et al.  The Deformation of Polycrystalline‐Silicon Deposited on Oxide‐Covered Single Crystal Silicon Substrates , 1977 .

[64]  Dim-Lee Kwong,et al.  Silicided shallow junction formation by ion implantation of impurity ions into silicide layers and subsequent drive‐in , 1987 .

[65]  Koji Sumino,et al.  Mechanical strength of silicon crystals as a function of the oxygen concentration , 1984 .

[66]  P. J. Rosser,et al.  Modelling Diffusion in Silicides , 1988, ESSDERC '88: 18th European Solid State Device Research Conference.

[67]  C. Claeys,et al.  Film‐edge‐induced dislocation generation in silicon substrates. I. Theoretical model , 1987 .

[68]  J. P. Krusius,et al.  Field Oxide Thinning in Poly Buffer LOCOS Isolation with Active Area Spacings to 0.1 μm , 1990 .

[69]  L. T. Toncheva,et al.  The bending of silicon wafers by thin polycrystalline silicon film deposition and by film doping using boron diffusion , 1979 .