Yeast, a model organism for iron and copper metabolism studies

[1]  N. Andrews,et al.  Iron transport across biologic membranes. , 2009, Nutrition reviews.

[2]  P. Aisen,et al.  Chemistry and biology of eukaryotic iron metabolism. , 2001, The international journal of biochemistry & cell biology.

[3]  P. Blaiseau,et al.  Aft2p, a Novel Iron-regulated Transcription Activator That Modulates, with Aft1p, Intracellular Iron Use and Resistance to Oxidative Stress in Yeast* , 2001, The Journal of Biological Chemistry.

[4]  I. Fridovich Reflections of a Fortunate Biochemist , 2001, The Journal of Biological Chemistry.

[5]  Jerry Kaplan,et al.  CCC1 Is a Transporter That Mediates Vacuolar Iron Storage in Yeast* , 2001, The Journal of Biological Chemistry.

[6]  R. Lill,et al.  An essential function of the mitochondrial sulfhydryl oxidase Erv1p/ALR in the maturation of cytosolic Fe/S proteins , 2001, EMBO reports.

[7]  W. Koppenol The Haber-Weiss cycle – 70 years later , 2001, Redox report : communications in free radical research.

[8]  F. Palau,et al.  Friedreich's ataxia and frataxin: molecular genetics, evolution and pathogenesis (Review). , 2001, International journal of molecular medicine.

[9]  Raffaele Lodi,et al.  Mitochondrial Dysfunction in Friedreich’s Ataxia , 2001, Neurosignals.

[10]  D. Pain,et al.  J-domain Protein, Jac1p, of Yeast Mitochondria Required for Iron Homeostasis and Activity of Fe-S Cluster Proteins* , 2001, The Journal of Biological Chemistry.

[11]  R. Meneghini,et al.  Iron and its sensitive balance in the cell. , 2001, Mutation research.

[12]  R. Lill,et al.  Mitochondrial ABC transporters. , 2001, Research in microbiology.

[13]  W. Neupert,et al.  The mitochondrial proteins Ssq1 and Jac1 are required for the assembly of iron sulfur clusters in mitochondria. , 2001, Journal of molecular biology.

[14]  J. Gitlin,et al.  The Neuronal Adaptor Protein X11α Interacts with the Copper Chaperone for SOD1 and Regulates SOD1 Activity* , 2001, The Journal of Biological Chemistry.

[15]  F. Foury,et al.  Mitochondrial Control of Iron Homeostasis , 2001, The Journal of Biological Chemistry.

[16]  E. Craig,et al.  Jac1, a mitochondrial J-type chaperone, is involved in the biogenesis of Fe/S clusters in Saccharomyces cerevisiae. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[17]  P. Blaiseau,et al.  Siderophore uptake and use by the yeast Saccharomyces cerevisiae. , 2001, Microbiology.

[18]  D. Winge,et al.  The mitochondrial copper metallochaperone Cox17 exists as an oligomeric, polycopper complex. , 2001, Biochemistry.

[19]  D. Pain,et al.  Adrenodoxin Reductase Homolog (Arh1p) of Yeast Mitochondria Required for Iron Homeostasis* , 2001, The Journal of Biological Chemistry.

[20]  S. Toyokuni,et al.  Iron-induced oxidative damage in colon carcinoma (caco-2) cells , 2001, Free radical research.

[21]  D. Winge,et al.  Mutational Analysis of the Mitochondrial Copper Metallochaperone Cox17* , 2000, The Journal of Biological Chemistry.

[22]  A. Lode,et al.  Mitochondrial copper metabolism in yeast: interaction between Sco1p and Cox2p , 2000, FEBS letters.

[23]  Adiel Cohen,et al.  The Family of SMF Metal Ion Transporters in Yeast Cells* , 2000, The Journal of Biological Chemistry.

[24]  D. Thiele,et al.  Characterization of the Saccharomyces cerevisiae High Affinity Copper Transporter Ctr3* , 2000, The Journal of Biological Chemistry.

[25]  C. Kahn,et al.  Frataxin activates mitochondrial energy conversion and oxidative phosphorylation. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[26]  R. Hassett,et al.  The Fe(II) permease Fet4p functions as a low affinity copper transporter and supports normal copper trafficking in Saccharomyces cerevisiae. , 2000, The Biochemical journal.

[27]  P. Brown,et al.  Identification of the Copper Regulon in Saccharomyces cerevisiae by DNA Microarrays* , 2000, The Journal of Biological Chemistry.

[28]  Thomas V. O'Halloran,et al.  Metallochaperones, an Intracellular Shuttle Service for Metal Ions* , 2000, The Journal of Biological Chemistry.

[29]  R. Lill,et al.  Biogenesis of iron-sulfur proteins in eukaryotes: a novel task of mitochondria that is inherited from bacteria. , 2000, Biochimica et biophysica acta.

[30]  R. Lill,et al.  Maturation of cellular Fe-S proteins: an essential function of mitochondria. , 2000, Trends in biochemical sciences.

[31]  R. Lill,et al.  Mitochondrial Isa2p plays a crucial role in the maturation of cellular iron–sulfur proteins , 2000, FEBS letters.

[32]  Yudong D. He,et al.  Functional Discovery via a Compendium of Expression Profiles , 2000, Cell.

[33]  D. Glerum,et al.  Characterization and localization of human COX17, a gene involved in mitochondrial copper transport , 2000, Human Genetics.

[34]  L. T. Jensen,et al.  Role of Saccharomyces cerevisiae ISA1and ISA2 in Iron Homeostasis , 2000, Molecular and Cellular Biology.

[35]  R. Lill,et al.  Isa1p Is a Component of the Mitochondrial Machinery for Maturation of Cellular Iron-Sulfur Proteins and Requires Conserved Cysteine Residues for Function* , 2000, The Journal of Biological Chemistry.

[36]  J. Ernst,et al.  Identification and substrate specificity of a ferrichrome-type siderophore transporter (Arn1p) in Saccharomyces cerevisiae. , 2000, FEMS microbiology letters.

[37]  J. Kaplan,et al.  CCC1 Suppresses Mitochondrial Damage in the Yeast Model of Friedreich's Ataxia by Limiting Mitochondrial Iron Accumulation* , 2000, The Journal of Biological Chemistry.

[38]  R. Lill,et al.  A mitochondrial ferredoxin is essential for biogenesis of cellular iron-sulfur proteins. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[39]  R. Piper,et al.  The Iron Transporter Fth1p Forms a Complex with the Fet5 Iron Oxidase and Resides on the Vacuolar Membrane* , 1999, The Journal of Biological Chemistry.

[40]  S. Garland,et al.  Saccharomyces cerevisiae ISU1 and ISU2: members of a well-conserved gene family for iron-sulfur cluster assembly. , 1999, Journal of molecular biology.

[41]  I. Fridovich Fundamental Aspects of Reactive Oxygen Species, or What's the Matter with Oxygen? , 1999, Annals of the New York Academy of Sciences.

[42]  J. Briat,et al.  Regulation of plant ferritin synthesis: how and why , 1999, Cellular and Molecular Life Sciences CMLS.

[43]  I. Fridovich,et al.  Superoxide and Iron: Partners in Crime , 1999, IUBMB Life - A Journal of the International Union of Biochemistry and Molecular Biology.

[44]  J. Mercer,et al.  Defective copper-induced trafficking and localization of the Menkes protein in patients with mild and copper-treated classical Menkes disease. , 1999, Human molecular genetics.

[45]  J. Gitlin,et al.  The Role of Copper in Neurodegenerative Disease , 1999, Neurobiology of Disease.

[46]  R. Lill,et al.  The mitochondrial proteins Atm1p and Nfs1p are essential for biogenesis of cytosolic Fe/S proteins , 1999, The EMBO journal.

[47]  R. Lill,et al.  Mechanism of Iron Transport to the Site of Heme Synthesis inside Yeast Mitochondria* , 1999, The Journal of Biological Chemistry.

[48]  D. Thiele,et al.  A delicate balance: homeostatic control of copper uptake and distribution. , 1999, The Journal of nutrition.

[49]  T. O’Halloran,et al.  Undetectable intracellular free copper: the requirement of a copper chaperone for superoxide dismutase. , 1999, Science.

[50]  D. Radisky,et al.  The Yeast Frataxin Homologue Mediates Mitochondrial Iron Efflux , 1999, The Journal of Biological Chemistry.

[51]  S. Garland,et al.  Suppressors of Superoxide Dismutase (SOD1) Deficiency in Saccharomyces cerevisiae , 1998, The Journal of Biological Chemistry.

[52]  D. Radisky,et al.  Chloride is an allosteric effector of copper assembly for the yeast multicopper oxidase Fet3p: an unexpected role for intracellular chloride channels. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[53]  M. Guerinot,et al.  MOLECULAR BIOLOGY OF CATION TRANSPORT IN PLANTS. , 1998, Annual review of plant physiology and plant molecular biology.

[54]  M. Posewitz,et al.  Characterization of the copper chaperone Cox17 of Saccharomyces cerevisiae. , 1998, Biochemistry.

[55]  D. Thiele,et al.  Dynamic Regulation of Copper Uptake and Detoxification Genes in Saccharomyces cerevisiae , 1998, Molecular and Cellular Biology.

[56]  T. Lyons,et al.  The dark side of dioxygen biochemistry. , 1998, Current opinion in chemical biology.

[57]  A. Romeo,et al.  Regulation of High Affinity Iron Uptake in the YeastSaccharomyces cerevisiae , 1998, The Journal of Biological Chemistry.

[58]  D. Thiele,et al.  Copper Differentially Regulates the Activity and Degradation of Yeast Mac1 Transcription Factor* , 1998, Journal of Biological Chemistry.

[59]  D. Glerum,et al.  Purification, Characterization, and Localization of Yeast Cox17p, a Mitochondrial Copper Shuttle* , 1997, The Journal of Biological Chemistry.

[60]  D. Thiele,et al.  Saccharomyces cerevisiae mutants altered in vacuole function are defective in copper detoxification and iron‐responsive gene transcription , 1997, Yeast.

[61]  B. Guiard,et al.  The ABC transporter Atm1p is required for mitochondrial iron homeostasis , 1997, FEBS letters.

[62]  P. Gros,et al.  Functional Complementation of the Yeast Divalent Cation Transporter Family SMF by NRAMP2, a Member of the Mammalian Natural Resistance-associated Macrophage Protein Family* , 1997, The Journal of Biological Chemistry.

[63]  Liangtao Li,et al.  Characterization of Two Homologous Yeast Genes That Encode Mitochondrial Iron Transporters* , 1997, The Journal of Biological Chemistry.

[64]  J. Valentine,et al.  Delivering Copper Inside Yeast and Human Cells , 1997, Science.

[65]  P. Brown,et al.  Exploring the metabolic and genetic control of gene expression on a genomic scale. , 1997, Science.

[66]  D. Kosman,et al.  Homeostatic Regulation of Copper Uptake in Yeast via Direct Binding of MAC1 Protein to Upstream Regulatory Sequences ofFRE1 and CTR1 * , 1997, The Journal of Biological Chemistry.

[67]  D. Thiele,et al.  Copper-specific Transcriptional Repression of Yeast Genes Encoding Critical Components in the Copper Transport Pathway* , 1997, The Journal of Biological Chemistry.

[68]  M Aldea,et al.  The AFT1 Transcriptional Factor is Differentially Required for Expression of High‐Affinity Iron Uptake Genes in Saccharomyces cerevisiae , 1997, Yeast.

[69]  M. Pandolfo,et al.  Regulation of mitochondrial iron accumulation by Yfh1p, a putative homolog of frataxin. , 1997, Science.

[70]  D. Eide,et al.  Characterization of the FET4 Protein of Yeast , 1997, The Journal of Biological Chemistry.

[71]  T. O’Halloran,et al.  A Role for the Saccharomyces cerevisiae ATX1 Gene in Copper Trafficking and Iron Transport* , 1997, The Journal of Biological Chemistry.

[72]  J. Gitlin,et al.  Biochemical characterization and intracellular localization of the Menkes disease protein. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[73]  D. Glerum,et al.  SCO1 and SCO2 Act as High Copy Suppressors of a Mitochondrial Copper Recruitment Defect in Saccharomyces cerevisiae* , 1996, The Journal of Biological Chemistry.

[74]  D. Winge,et al.  Enhanced Effectiveness of Copper Ion Buffering by CUP1 Metallothionein Compared with CRS5 Metallothionein in Saccharomyces cerevisiae* , 1996, The Journal of Biological Chemistry.

[75]  D. Thiele,et al.  A widespread transposable element masks expression of a yeast copper transport gene. , 1996, Genes & development.

[76]  E. Craig,et al.  The cold sensitivity of a mutant of Saccharomyces cerevisiae lacking a mitochondrial heat shock protein 70 is suppressed by loss of mitochondrial DNA , 1996, The Journal of cell biology.

[77]  Liangtao Li,et al.  Characterization of Yeast Methyl Sterol Oxidase (ERG25) and Identification of a Human Homologue* , 1996, The Journal of Biological Chemistry.

[78]  R. Klausner,et al.  Iron‐regulated DNA binding by the AFT1 protein controls the iron regulon in yeast. , 1996, The EMBO journal.

[79]  J. Bonifacino,et al.  Copper‐dependent degradation of the Saccharomyces cerevisiae plasma membrane copper transporter Ctr1p in the apparent absence of endocytosis. , 1996, The EMBO journal.

[80]  D. Glerum,et al.  Characterization of COX17, a Yeast Gene Involved in Copper Metabolism and Assembly of Cytochrome Oxidase* , 1996, The Journal of Biological Chemistry.

[81]  V. Culotta,et al.  Copper ions and the regulation ofSaccharomyces cerevisiae metallothionein genes under aerobic and anaerobic conditions , 1996, Molecular and General Genetics MGG.

[82]  D. Stillman,et al.  Identification of SLF1 as a new copper homeostasis gene involved in copper sulfide mineralization in Saccharomyces cerevisiae , 1996, Molecular and cellular biology.

[83]  R. Klausner,et al.  A Permease-Oxidase Complex Involved in High-Affinity Iron Uptake in Yeast , 1996, Science.

[84]  T. O’Halloran,et al.  Iron Metabolism in Eukaryotes—Mars and Venus at It Again , 1996, Science.

[85]  C. Bertoncini,et al.  DNA strand breaks produced by oxidative stress in mammalian cells exhibit 3'-phosphoglycolate termini. , 1995, Nucleic acids research.

[86]  T. Dunn,et al.  The Menkes/Wilson disease gene homologue in yeast provides copper to a ceruloplasmin-like oxidase required for iron uptake. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[87]  R. Klausner,et al.  AFT1: a mediator of iron regulated transcriptional control in Saccharomyces cerevisiae. , 1995, The EMBO journal.

[88]  D. Cox,et al.  Wilson disease and Menkes disease: new handles on heavy-metal transport. , 1994, Trends in genetics : TIG.

[89]  J. Jungmann,et al.  MAC1, a nuclear regulatory protein related to Cu‐dependent transcription factors is involved in Cu/Fe utilization and stress resistance in yeast. , 1993, The EMBO journal.

[90]  D. Eide,et al.  The vacuolar H+-ATPase of Saccharomyces cerevisiae is required for efficient copper detoxification, mitochondrial function, and iron metabolism , 1993, Molecular and General Genetics MGG.

[91]  R. Meneghini,et al.  Iron is the intracellular metal involved in the production of DNA damage by oxygen radicals. , 1991, Mutation research.

[92]  K. Ghoshal,et al.  Regulation of metallothionein gene expression. , 2001, Progress in nucleic acid research and molecular biology.

[93]  R. Amasino,et al.  Delivering copper within plant cells. , 2000, Current opinion in plant biology.

[94]  G. Andrews,et al.  Regulation of metallothionein gene expression by oxidative stress and metal ions. , 2000, Biochemical pharmacology.

[95]  T. Lyons,et al.  Biological chemistry of copper-zinc superoxide dismutase and its link to amyotrophic lateral sclerosis. , 1999, Metal ions in biological systems.

[96]  D. Eide The molecular biology of metal ion transport in Saccharomyces cerevisiae. , 1998, Annual review of nutrition.

[97]  R. Meneghini Iron homeostasis, oxidative stress, and DNA damage. , 1997, Free radical biology & medicine.

[98]  V. Culotta,et al.  Copper ions and the regulation of , 1996 .

[99]  S. Packman,et al.  Cellular copper transport. , 1995, Annual review of nutrition.

[100]  I. Fridovich,et al.  Superoxide radical and superoxide dismutases. , 1995, Annual review of biochemistry.

[101]  I. Fridovich,et al.  The role of O2.- in the production of HO.: in vitro and in vivo. , 1994, Free radical biology & medicine.