Neuronale Vielfalt in der Netzhaut

Zusammenfassung Die Netzhaut im Auge führt bereits komplexe Berechnungen aus, um nur verhaltensrelevante Informationen aus unserer Umgebung an das Gehirn weiterzuleiten. Diese Berechnungen werden von zahlreichen Zelltypen durchgeführt, die sich zu komplexen Schaltkreisen zusammenschließen. Neue experimentelle und statistische Methoden erlauben es, die neuronale Vielfalt in der Netzhaut detailliert zu erfassen und zu verstehen – das Ziel, eine vollständige Liste der Zelltypen und damit der „Bauteile“ der Netzhaut zu erstellen, rückt nun in greifbare Nähe. In diesem Artikel geben wir einen Überblick über den aktuellen Stand dieses Unterfangens und zeigen mögliche zukünftige Forschungsrichtungen auf.

[1]  Philipp Berens,et al.  Die Retina im Rausch der Kanäle , 2017, Klinische Monatsblätter für Augenheilkunde.

[2]  M. Bethge,et al.  Inhibition decorrelates visual feature representations in the inner retina , 2017, Nature.

[3]  F. Rieke,et al.  Glutamatergic Monopolar Interneurons Provide a Novel Pathway of Excitation in the Mouse Retina , 2016, Current Biology.

[4]  Evan Z. Macosko,et al.  Comprehensive Classification of Retinal Bipolar Neurons by Single-Cell Transcriptomics , 2016, Cell.

[5]  Philipp Berens,et al.  Connectivity map of bipolar cells and photoreceptors in the mouse retina , 2016, bioRxiv.

[6]  Alon Poleg-Polsky,et al.  Species-specific wiring for direction selectivity in the mammalian retina , 2016, Nature.

[7]  Masahito Yamagata,et al.  Two Pairs of ON and OFF Retinal Ganglion Cells Are Defined by Intersectional Patterns of Transcription Factor Expression. , 2016, Cell reports.

[8]  D. Kerschensteiner,et al.  Target-Specific Glycinergic Transmission from VGluT3-Expressing Amacrine Cells Shapes Suppressive Contrast Responses in the Retina. , 2016, Cell reports.

[9]  Yi Zhang,et al.  Segregated Glycine-Glutamate Co-transmission from vGluT3 Amacrine Cells to Contrast-Suppressed and Contrast-Enhanced Retinal Circuits , 2016, Neuron.

[10]  M. Meister,et al.  A neuronal circuit for colour vision based on rod–cone opponency , 2016, Nature.

[11]  M. Bethge,et al.  Balanced excitation and inhibition decorrelates visual feature representation in the mammalian inner retina , 2016, bioRxiv.

[12]  H. Sebastian Seung,et al.  Analogous Convergence of Sustained and Transient Inputs in Parallel On and Off Pathways for Retinal Motion Computation , 2016, Cell reports.

[13]  Matthias Bethge,et al.  The functional diversity of retinal ganglion cells in the mouse , 2015, Nature.

[14]  J. Sanes,et al.  The types of retinal ganglion cells: current status and implications for neuronal classification. , 2015, Annual review of neuroscience.

[15]  Evan Z. Macosko,et al.  Highly Parallel Genome-wide Expression Profiling of Individual Cells Using Nanoliter Droplets , 2015, Cell.

[16]  Seunghoon Lee,et al.  An Unconventional Glutamatergic Circuit in the Retina Formed by vGluT3 Amacrine Cells , 2014, Neuron.

[17]  L. P. Morin,et al.  Retinofugal projections in the mouse , 2014, The Journal of comparative neurology.

[18]  Herwig Baier,et al.  The Retinal Projectome Reveals Brain-Area-Specific Visual Representations Generated by Ganglion Cell Diversity , 2014, Current Biology.

[19]  H. Seung,et al.  Neuronal Cell Types and Connectivity: Lessons from the Retina , 2014, Neuron.

[20]  Thomas Euler,et al.  Retinal bipolar cells: elementary building blocks of vision , 2014, Nature Reviews Neuroscience.

[21]  Srinivas C. Turaga,et al.  Space-time wiring specificity supports direction selectivity in the retina , 2014, Nature.

[22]  Sen Song,et al.  A genetic and computational approach to structurally classify neuronal types , 2014, Nature Communications.

[23]  Adam Bleckert,et al.  Visual Space Is Represented by Nonmatching Topographies of Distinct Mouse Retinal Ganglion Cell Types , 2014, Current Biology.

[24]  Thomas Euler,et al.  A Tale of Two Retinal Domains: Near-Optimal Sampling of Achromatic Contrasts in Natural Scenes through Asymmetric Photoreceptor Distribution , 2013, Neuron.

[25]  Srinivas C. Turaga,et al.  Connectomic reconstruction of the inner plexiform layer in the mouse retina , 2013, Nature.

[26]  R. Masland The Neuronal Organization of the Retina , 2012, Neuron.

[27]  Ji-Jie Pang,et al.  Ionotropic glutamate receptors mediate OFF responses in light-adapted ON bipolar cells , 2012, Vision Research.

[28]  J. Sanes,et al.  The most numerous ganglion cell type of the mouse retina is a selective feature detector , 2012, Proceedings of the National Academy of Sciences.

[29]  A. Borst,et al.  Seeing Things in Motion: Models, Circuits, and Mechanisms , 2011, Neuron.

[30]  Kevin L. Briggman,et al.  Wiring specificity in the direction-selectivity circuit of the retina , 2011, Nature.

[31]  Erika D Eggers,et al.  Multiple pathways of inhibition shape bipolar cell responses in the retina , 2010, Visual Neuroscience.

[32]  J. Diamond,et al.  Retinal Parallel Processors: More than 100 Independent Microcircuits Operate within a Single Interneuron , 2010, Neuron.

[33]  Frank S Werblin,et al.  Six different roles for crossover inhibition in the retina: Correcting the nonlinearities of synaptic transmission , 2010, Visual Neuroscience.

[34]  Tim Gollisch,et al.  Eye Smarter than Scientists Believed: Neural Computations in Circuits of the Retina , 2010, Neuron.

[35]  Rava Azeredo da Silveira,et al.  Approach sensitivity in the retina processed by a multifunctional neural circuit , 2009, Nature Neuroscience.

[36]  H. Wässle,et al.  Receptive field properties of ON- and OFF-ganglion cells in the mouse retina , 2009, Visual Neuroscience.

[37]  H. Wässle,et al.  Cone Contacts, Mosaics, and Territories of Bipolar Cells in the Mouse Retina , 2009, The Journal of Neuroscience.

[38]  J. Sanes,et al.  Molecular identification of a retinal cell type that responds to upward motion , 2008, Nature.

[39]  P. Detwiler,et al.  A Dendrite-Autonomous Mechanism for Direction Selectivity in Retinal Starburst Amacrine Cells , 2007, PLoS biology.

[40]  F. Müller,et al.  Type 3a and type 3b OFF cone bipolar cells provide for the alternative rod pathway in the mouse retina , 2007, The Journal of comparative neurology.

[41]  Bin Lin,et al.  Populations of wide‐field amacrine cells in the mouse retina , 2006, The Journal of comparative neurology.

[42]  H. Wässle,et al.  Types of bipolar cells in the mouse retina , 2004, The Journal of comparative neurology.

[43]  Heinz Wässle,et al.  Characterization of an amacrine cell type of the mammalian retina immunoreactive for vesicular glutamate transporter 3 , 2004, The Journal of comparative neurology.

[44]  P. Detwiler,et al.  Directionally selective calcium signals in dendrites of starburst amacrine cells , 2002, Nature.

[45]  S. Bloomfield,et al.  Rod Vision: Pathways and Processing in the Mammalian Retina , 2001, Progress in Retinal and Eye Research.

[46]  Idan Segev,et al.  Dendritic processing , 1998 .

[47]  Richard H Masland,et al.  Extreme Diversity among Amacrine Cells: Implications for Function , 1998, Neuron.

[48]  H. Kolb,et al.  The midget pathways of the primate retina , 2004, Documenta Ophthalmologica.