On the morphology of polymer‐based photovoltaics

We review the morphologies of polymer-based solar cells and the parameters that govern the evolution of the morphologies and describe different approaches to achieve the optimum morphology for a BHJ OPV. While there are some distinct differences, there are also some commonalities. It is evident that morphology and the control of the morphology are important for device performance and, by controlling the thermodynamics, in particular, the interactions of the components, and by controlling kinetic parameters, like the rate of solvent evaporation, crystallization and phase separation, optimized morphologies for a given system can be achieved. While much research has focused on P3HT, it is evident that a clearer understanding of the morphology and the evolution of the morphology in low bad gap polymer systems will increase the efficiency further. While current OPVs are on the verge of breaking the 10% barrier, manipulating and controlling the morphology will still be key for device optimization and, equally important, for the fabrication of these devices in an industrial setting. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012

[1]  Mario Leclerc,et al.  A Low‐Bandgap Poly(2,7‐Carbazole) Derivative for Use in High‐Performance Solar Cells , 2007 .

[2]  Olle Inganäs,et al.  Imaging of the 3D nanostructure of a polymer solar cell by electron tomography. , 2009, Nano letters.

[3]  Yong Cao,et al.  Simultaneous Enhancement of Open‐Circuit Voltage, Short‐Circuit Current Density, and Fill Factor in Polymer Solar Cells , 2011, Advanced materials.

[4]  S. Roth,et al.  Thin films of photoactive polymer blends. , 2009, Chemphyschem : a European journal of chemical physics and physical chemistry.

[5]  Amy M. Ballantyne,et al.  The role of alkane dithiols in controlling polymer crystallization in small band gap polymer:Fullerene solar cells , 2011 .

[6]  T. Russell,et al.  Morphological Characterization of a Low‐Bandgap Crystalline Polymer:PCBM Bulk Heterojunction Solar Cells , 2011 .

[7]  K. Hashimoto,et al.  Fullerene attached all-semiconducting diblock copolymers for stable single-component polymer solar cells. , 2010, Chemical communications.

[8]  Gang Li,et al.  Vertical Phase Separation in Poly(3‐hexylthiophene): Fullerene Derivative Blends and its Advantage for Inverted Structure Solar Cells , 2009 .

[9]  E. W. Meijer,et al.  Two-dimensional charge transport in self-organized, high-mobility conjugated polymers , 1999, Nature.

[10]  Xiaoniu Yang,et al.  Morphology and Thermal Stability of the Active Layer in Poly(p-phenylenevinylene)/Methanofullerene Plastic Photovoltaic Devices , 2004 .

[11]  Xiaoniu Yang,et al.  Nanoscale morphology of high-performance polymer solar cells. , 2005, Nano letters.

[12]  Claire H. Woo,et al.  All-polymer photovoltaic devices of poly(3-(4-n-octyl)-phenylthiophene) from Grignard Metathesis (GRIM) polymerization. , 2009, Journal of the American Chemical Society.

[13]  M. McGehee,et al.  Organic bulk heterojunction solar cells using poly(2,5-bis(3-tetradecyllthiophen-2-yl)thieno[3,2,-b]thiophene) , 2008 .

[14]  Xiong Gong,et al.  Thermally Stable, Efficient Polymer Solar Cells with Nanoscale Control of the Interpenetrating Network Morphology , 2005 .

[15]  David G Lidzey,et al.  Depletion of PCBM at the Cathode Interface in P3HT/PCBM Thin Films as Quantified via Neutron Reflectivity Measurements , 2010, Advanced materials.

[16]  Yun Zhao,et al.  Solvent-vapor treatment induced performance enhancement of poly(3-hexylthiophene):methanofullerene bulk-heterojunction photovoltaic cells , 2007 .

[17]  John R. Reynolds,et al.  Dithienogermole as a fused electron donor in bulk heterojunction solar cells. , 2011, Journal of the American Chemical Society.

[18]  Donal D. C. Bradley,et al.  A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene:fullerene solar cells , 2006 .

[19]  C. Shih,et al.  Efficiency improvement of blended poly(3-hexylthiophene) and 1-(3-methoxycarbonyl)-propyl-1-phenyl-(6,6)C61 solar cells by nanoimprinting , 2009 .

[20]  Cecilia M. Björström,et al.  Multilayer formation in spin-coated thin films of low-bandgap polyfluorene:PCBM blends , 2005 .

[21]  A. Alivisatos,et al.  Controlling the Morphology of Nanocrystal–Polymer Composites for Solar Cells , 2003 .

[22]  Mukti Aryal,et al.  Nano-confinement Induced Chain Alignment in Ordered P3ht Nanostructures Defined by Nanoimprint Lithography High-density, and Ordered Nanostructures in Conjugated Polymer Poly(3-hexylthiophene) or P3ht, and Also to Simultaneously Control 3d Chain Alignment within These P3ht Nanostructures. Out-of-pla , 2022 .

[23]  C. Tang Two‐layer organic photovoltaic cell , 1986 .

[24]  Tae-Woo Lee,et al.  Three‐Dimensional Bulk Heterojunction Morphology for Achieving High Internal Quantum Efficiency in Polymer Solar Cells , 2009 .

[25]  Gang Li,et al.  “Solvent Annealing” Effect in Polymer Solar Cells Based on Poly(3‐hexylthiophene) and Methanofullerenes , 2007 .

[26]  R. Friend,et al.  Formation of nanopatterned polymer blends in photovoltaic devices. , 2010, Nano letters.

[27]  Zhengguo Zhu,et al.  Influence of the Bridging Atom on the Performance of a Low‐Bandgap Bulk Heterojunction Solar Cell , 2010, Advanced materials.

[28]  H. D. Keith,et al.  A Phenomenological Theory of Spherulitic Crystallization , 1963 .

[29]  Prashant Sonar,et al.  A High Mobility P‐Type DPP‐Thieno[3,2‐b]thiophene Copolymer for Organic Thin‐Film Transistors , 2010, Advanced materials.

[30]  K. Wei,et al.  Inverted heterojunction solar cells incorporating fullerene/polythiophene composite core/shell nanorod arrays , 2010, Nanotechnology.

[31]  Tao Wang,et al.  The Nanoscale Morphology of a PCDTBT:PCBM Photovoltaic Blend , 2011 .

[32]  F. Liu,et al.  Bulk heterojunction photovoltaic active layers via bilayer interdiffusion. , 2011, Nano letters.

[33]  U. Steiner,et al.  Influence of molecular weight on the solar cell performance of double-crystalline donor-acceptor block copolymers , 2009 .

[34]  David S. Germack,et al.  Interfacial Segregation in Polymer/Fullerene Blend Films for Photovoltaic Devices , 2010 .

[35]  Stelios A. Choulis,et al.  How the structural deviations on the backbone of conjugated polymers influence their optoelectronic properties and photovoltaic performance , 2011 .

[36]  Martin Brinkmann,et al.  Orientation of Regioregular Poly(3‐hexylthiophene) by Directional Solidification: A Simple Method to Reveal the Semicrystalline Structure of a Conjugated Polymer , 2006 .

[37]  Mm Martijn Wienk,et al.  Narrow‐Bandgap Diketo‐Pyrrolo‐Pyrrole Polymer Solar Cells: The Effect of Processing on the Performance , 2008 .

[38]  Mats Andersson,et al.  Influence of Solvent Mixing on the Morphology and Performance of Solar Cells Based on Polyfluorene Copolymer/Fullerene Blends , 2006 .

[39]  Zhihua Chen,et al.  Naphthalenedicarboximide- vs perylenedicarboximide-based copolymers. Synthesis and semiconducting properties in bottom-gate N-channel organic transistors. , 2009, Journal of the American Chemical Society.

[40]  B. Collins,et al.  Molecular Miscibility of Polymer-Fullerene Blends , 2010 .

[41]  Etienne Goovaerts,et al.  Effect of temperature on the morphological and photovoltaic stability of bulk heterojunction polymer: fullerene solar cells , 2008 .

[42]  N. Greenham,et al.  Photovoltaic Devices Using Blends of Branched CdSe Nanoparticles and Conjugated Polymers , 2003 .

[43]  Ligui Li,et al.  Solvent-soaking treatment induced morphology evolution in P3HT/PCBM composite films , 2011 .

[44]  Gijsbertus de With,et al.  Three-dimensional nanoscale organization of bulk heterojunction polymer solar cells. , 2009, Nano letters.

[45]  H. Sirringhaus,et al.  Thieno[3,2-b]thiophene-diketopyrrolopyrrole-containing polymers for high-performance organic field-effect transistors and organic photovoltaic devices. , 2011, Journal of the American Chemical Society.

[46]  Richard H. Friend,et al.  Photovoltaic Performance and Morphology of Polyfluorene Blends: A Combined Microscopic and Photovoltaic Investigation , 2001 .

[47]  Shijun Jia,et al.  Polymer–Fullerene Bulk‐Heterojunction Solar Cells , 2009, Advanced materials.

[48]  Ye Tao,et al.  Toward a rational design of poly(2,7-carbazole) derivatives for solar cells. , 2008, Journal of the American Chemical Society.

[49]  Yang Yang,et al.  Silicon Atom Substitution Enhances Interchain Packing in a Thiophene‐Based Polymer System , 2010, Advanced materials.

[50]  Michael D. McGehee,et al.  Polymer-based solar cells , 2007 .

[51]  Gang Li,et al.  Highly efficient solar cell polymers developed via fine-tuning of structural and electronic properties. , 2009, Journal of the American Chemical Society.

[52]  Jin Young Kim,et al.  Processing additives for improved efficiency from bulk heterojunction solar cells. , 2008, Journal of the American Chemical Society.

[53]  Christoph J. Brabec,et al.  Bipolar Charge Transport in PCPDTBT‐PCBM Bulk‐Heterojunctions for Photovoltaic Applications , 2008 .

[54]  Stéphane Guillerez,et al.  Poly(3‐hexylthiophene) Fibers for Photovoltaic Applications , 2007 .

[55]  Luping Yu,et al.  Development of Semiconducting Polymers for Solar Energy Harvesting , 2010 .

[56]  Dieter Meissner,et al.  Nanoscale Morphology of Conjugated Polymer/Fullerene‐Based Bulk‐ Heterojunction Solar Cells , 2004 .

[57]  David Braun,et al.  Semiconducting polymer‐buckminsterfullerene heterojunctions: Diodes, photodiodes, and photovoltaic cells , 1993 .

[58]  K. Yager,et al.  Nanoimprint-induced molecular orientation in semiconducting polymer nanostructures. , 2011, ACS nano.

[59]  O. Inganäs,et al.  Alternating polyfluorenes collect solar light in polymer photovoltaics. , 2009, Accounts of chemical research.

[60]  Richard H. Friend,et al.  Dual electron donor/electron acceptor character of a conjugated polymer in efficient photovoltaic diodes , 2007 .

[61]  Niyazi Serdar Sariciftci,et al.  Morphology of polymer/fullerene bulk heterojunction solar cells , 2006 .

[62]  Fosong Wang,et al.  Monodisperse co-oligomer approach toward nanostructured films with alternating donor-acceptor lamellae. , 2009, Journal of the American Chemical Society.

[63]  K. Meerholz,et al.  Effect of Polymer Nanoparticle Formation on the Efficiency of Polythiophene Based “Bulk-Heterojunction” Solar Cells , 2008 .

[64]  J. Y. Park,et al.  Solvent-assisted soft nanoimprint lithography for structured bilayer heterojunction organic solar cells. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[65]  Kazuhito Hashimoto,et al.  All-polymer solar cells from perylene diimide based copolymers: material design and phase separation control. , 2011, Angewandte Chemie.

[66]  Valentin D. Mihailetchi,et al.  Charge Transport and Photocurrent Generation in Poly(3‐hexylthiophene): Methanofullerene Bulk‐Heterojunction Solar Cells , 2006 .

[67]  Ye Tao,et al.  Bulk heterojunction solar cells using thieno[3,4-c]pyrrole-4,6-dione and dithieno[3,2-b:2',3'-d]silole copolymer with a power conversion efficiency of 7.3%. , 2011, Journal of the American Chemical Society.

[68]  Michael D. McGehee,et al.  Conjugated Polymer Photovoltaic Cells , 2004 .

[69]  N. S. Sariciftci,et al.  Conjugated polymer-based organic solar cells. , 2007, Chemical reviews.

[70]  T. Emrick,et al.  Donor−Acceptor Poly(thiophene-block-perylene diimide) Copolymers: Synthesis and Solar Cell Fabrication , 2009 .

[71]  C. A. Walsh,et al.  Efficient photodiodes from interpenetrating polymer networks , 1995, Nature.

[72]  Do Hwan Kim,et al.  Layered molecular ordering of self-organized poly(3-hexylthiophene) thin films on hydrophobized surfaces , 2006 .

[73]  Claire H. Woo,et al.  Incorporation of furan into low band-gap polymers for efficient solar cells. , 2010, Journal of the American Chemical Society.

[74]  G. Hadziioannou,et al.  Phase separation in low molecular weight polymer mixtures , 1985 .

[75]  D. D. de Leeuw,et al.  Efficient Solar Cells Based on an Easily Accessible Diketopyrrolopyrrole Polymer , 2010, Advanced materials.

[76]  U. Kortshagen,et al.  Hybrid solar cells from P3HT and silicon nanocrystals. , 2009, Nano letters.

[77]  Maik Bärenklau,et al.  P3HT/PCBM Bulk Heterojunction Solar Cells: Impact of Blend Composition and 3D Morphology on Device Performance , 2010 .

[78]  K. Wei,et al.  Ordered polythiophene/fullerene composite core–shell nanorod arrays for solar cell applications , 2009, Nanotechnology.

[79]  Yang Yang,et al.  Polymer solar cells with enhanced open-circuit voltage and efficiency , 2009 .

[80]  Luping Yu,et al.  A new class of semiconducting polymers for bulk heterojunction solar cells with exceptionally high performance. , 2010, Accounts of chemical research.

[81]  Michael Niggemann,et al.  Efficiency limiting morphological factors of MDMO-PPV:PCBM plastic solar cells , 2006 .

[82]  V. Bulović,et al.  Heterojunction photovoltaics using GaAs nanowires and conjugated polymers. , 2011, Nano letters.

[83]  J. S. Kim,et al.  High‐Efficiency Organic Solar Cells Based on Preformed Poly(3‐hexylthiophene) Nanowires , 2011 .

[84]  M. Dadmun,et al.  A new model for the morphology of P3HT/PCBM organic photovoltaics from small-angle neutron scattering: rivers and streams. , 2011, ACS nano.

[85]  M. Mackay,et al.  Nanoparticle concentration profile in polymer-based solar cells , 2010 .

[86]  M. Toney,et al.  Structural Order in Bulk Heterojunction Films Prepared with Solvent Additives , 2011, Advanced materials.

[87]  Paul A. van Hal,et al.  Efficient methano[70]fullerene/MDMO-PPV bulk heterojunction photovoltaic cells. , 2003, Angewandte Chemie.

[88]  J. Moon,et al.  Spontaneous formation of bulk heterojunction nanostructures: multiple routes to equivalent morphologies. , 2011, Nano letters.

[89]  Li Wang,et al.  Enhancement of photovoltaic characteristics using a suitable solvent in hybrid polymer/ multiarmed CdS nanorods solar cells , 2007 .

[90]  Luping Yu,et al.  Structure, dynamics, and power conversion efficiency correlations in a new low bandgap polymer: PCBM solar cell. , 2010, The journal of physical chemistry. B.

[91]  C. Brabec,et al.  2.5% efficient organic plastic solar cells , 2001 .

[92]  P. Lugli,et al.  Nanostructured interfaces in polymer solar cells , 2010 .

[93]  W. J. Beek,et al.  Efficient Hybrid Solar Cells from Zinc Oxide Nanoparticles and a Conjugated Polymer , 2004 .

[94]  Fang‐Chung Chen,et al.  Solvent mixtures for improving device efficiency of polymer photovoltaic devices , 2008 .

[95]  Harald Ade,et al.  A Quantitative Study of PCBM Diffusion during Annealing of P3HT:PCBM Blend Films , 2009 .

[96]  Craig J. Hawker,et al.  Interdiffusion of PCBM and P3HT Reveals Miscibility in a Photovoltaically Active Blend , 2011 .

[97]  Benjamin J. Schwartz,et al.  Reappraising the Need for Bulk Heterojunctions in Polymer−Fullerene Photovoltaics: The Role of Carrier Transport in All-Solution-Processed P3HT/PCBM Bilayer Solar Cells , 2009 .

[98]  Mats Andersson,et al.  Vertical phase separation in spin-coated films of a low bandgap polyfluorene/PCBM blend—Effects of specific substrate interaction , 2007 .

[99]  Yang Yang,et al.  Synthesis, characterization, and photovoltaic properties of a low band gap polymer based on silole-containing polythiophenes and 2,1,3-benzothiadiazole. , 2008, Journal of the American Chemical Society.

[100]  Christoph J. Brabec,et al.  Bimolecular Crystals of Fullerenes in Conjugated Polymers and the Implications of Molecular Mixing for Solar Cells , 2009 .

[101]  Jean Manca,et al.  Morphology of MDMO-PPV:PCBM bulk heterojunction organic solar cells studied by AFM, KFM, and TEM , 2003, SPIE Optics + Photonics.

[102]  Ronn Andriessen,et al.  Disclosure of the nanostructure of MDMO-PPV:PCBM bulk hetero-junction organic solar cells by a combination of SPM and TEM , 2003 .

[103]  Frederik C. Krebs,et al.  A brief history of the development of organic and polymeric photovoltaics , 2004 .

[104]  Dong Yun Lee,et al.  Poly(3‐hexylthiophene) Nanorods with Aligned Chain Orientation for Organic Photovoltaics , 2010 .

[105]  Martin Brinkmann,et al.  Structure and morphology control in thin films of regioregular poly(3‐hexylthiophene) , 2011 .

[106]  J. Kroon,et al.  Efficient polymer:polymer bulk heterojunction solar cells , 2006 .

[107]  R. J. Kline,et al.  Molecular order in high-efficiency polymer/fullerene bulk heterojunction solar cells. , 2011, ACS nano.

[108]  J. Park,et al.  Bulk heterojunction solar cells based on preformed polythiophene nanowires via solubility-induced crystallization , 2010 .

[109]  Jenny Nelson,et al.  Morphology evolution via self-organization and lateral and vertical diffusion in polymer:fullerene solar cell blends. , 2008, Nature materials.

[110]  J. Anthony Small-Molecule, Nonfullerene Acceptors for Polymer Bulk Heterojunction Organic Photovoltaics† , 2011 .

[111]  Hee‐Tae Jung,et al.  Enhanced solar-cell efficiency in bulk-heterojunction polymer systems obtained by nanoimprinting with commercially available AAO membrane filters. , 2009, Small.

[112]  T. Kietzke,et al.  Efficient bulk heterojunction solar cells from regio-regular- poly(3,3‴-didodecyl quaterthiophene)/PC70BM blends , 2008 .

[113]  Wi Hyoung Lee,et al.  Effect of Annealing Solvent Solubility on the Performance of Poly(3-hexylthiophene)/Methanofullerene Solar Cells , 2009 .

[114]  M. Toney,et al.  Tuning the properties of polymer bulk heterojunction solar cells by adjusting fullerene size to control intercalation. , 2009, Nano letters.

[115]  Gang Li,et al.  For the Bright Future—Bulk Heterojunction Polymer Solar Cells with Power Conversion Efficiency of 7.4% , 2010, Advanced materials.

[116]  Stefan C J Meskers,et al.  Compositional and electric field dependence of the dissociation of charge transfer excitons in alternating polyfluorene copolymer/fullerene blends. , 2008, Journal of the American Chemical Society.

[117]  C. McNeill,et al.  Nanoscale quantitative chemical mapping of conjugated polymer blends. , 2006, Nano letters.

[118]  Vladimir Dyakonov,et al.  Influence of nanomorphology on the photovoltaic action of polymer–fullerene composites , 2004 .

[119]  A J Heeger,et al.  Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols. , 2007, Nature materials.

[120]  Wei Chen,et al.  Hierarchical nanomorphologies promote exciton dissociation in polymer/fullerene bulk heterojunction solar cells. , 2011, Nano letters.

[121]  Neil C. Greenham,et al.  Conjugated‐Polymer Blends for Optoelectronics , 2009 .

[122]  Michael James,et al.  Morphology of All‐Solution‐Processed “Bilayer” Organic Solar Cells , 2011, Advanced materials.

[123]  Vladimir Dyakonov,et al.  Polymer–fullerene bulk heterojunction solar cells , 2010, 1003.0359.

[124]  P. Sonar,et al.  Annealing-free high-mobility diketopyrrolopyrrole-quaterthiophene copolymer for solution-processed organic thin film transistors. , 2011, Journal of the American Chemical Society.

[125]  D. Ginley,et al.  Photovoltaic devices with a low band gap polymer and CdSe nanostructures exceeding 3% efficiency. , 2010, Nano letters.

[126]  Zhenan Bao,et al.  Solvent additives and their effects on blend morphologies of bulk heterojunctions , 2011 .

[127]  M. Thelakkat,et al.  Crystalline-crystalline donor-acceptor block copolymers. , 2008, Angewandte Chemie.

[128]  J. Loos,et al.  On the importance of morphology control in polymer solar cells. , 2010, Macromolecular rapid communications.

[129]  Gang Li,et al.  Fast-Grown Interpenetrating Network in Poly(3-hexylthiophene): Methanofullerenes Solar Cells Processed with Additive , 2009 .

[130]  A Paul Alivisatos,et al.  Hybrid solar cells with prescribed nanoscale morphologies based on hyperbranched semiconductor nanocrystals. , 2007, Nano letters.

[131]  A. Alivisatos,et al.  Hybrid Nanorod-Polymer Solar Cells , 2002, Science.

[132]  Jean M. J. Fréchet,et al.  Dependence of Regioregular Poly(3-hexylthiophene) Film Morphology and Field-Effect Mobility on Molecular Weight , 2005 .

[133]  A. J. Heeger,et al.  Morphology of composites of semiconducting polymers mixed with C60 , 1996 .

[134]  Cheng-En Wu,et al.  Enhanced performance and stability of a polymer solar cell by incorporation of vertically aligned, cross-linked fullerene nanorods. , 2011, Angewandte Chemie.

[135]  Wje Waldo Beek,et al.  Hybrid Solar Cells from Regioregular Polythiophene and ZnO Nanoparticles , 2006 .

[136]  J. Nelson,et al.  Device Performance of APFO‐3/PCBM Solar Cells with Controlled Morphology , 2009, Advanced materials.

[137]  Xiaoniu Yang,et al.  Relating the Morphology of Poly(p‐phenylene vinylene)/Methanofullerene Blends to Solar‐Cell Performance , 2004 .

[138]  J. K. Kim,et al.  Highly Ordered Nanoporous Alumina on Conducting Substrates with Adhesion Enhanced by Surface Modification: Universal Templates for Ultrahigh‐Density Arrays of Nanorods , 2010, Advanced materials.

[139]  D. D. de Leeuw,et al.  Poly(diketopyrrolopyrrole-terthiophene) for ambipolar logic and photovoltaics. , 2009, Journal of the American Chemical Society.

[140]  Dennis Nordlund,et al.  P3HT/PCBM bulk heterojunction organic photovoltaics: correlating efficiency and morphology. , 2011, Nano letters.

[141]  V. Bulović,et al.  Colloidal PbS quantum dot solar cells with high fill factor. , 2010, ACS nano.

[142]  W. Huck,et al.  Formation of Well‐Ordered Heterojunctions in Polymer:PCBM Photovoltaic Devices , 2011 .

[143]  Georges Hadziioannou,et al.  Fullerene-oligophenylenevinylene hybrids: Synthesis, electronic properties, and incorporation in photovoltaic devices , 2000 .

[144]  G. Bazan,et al.  Transition from Solution to the Solid State in Polymer Solar Cells Cast from Mixed Solvents , 2008 .

[145]  V. Bulović,et al.  Inorganic-organic hybrid solar cell: bridging quantum dots to conjugated polymer nanowires. , 2011, Nano letters.

[146]  J. Pallarès,et al.  Fabrication and characterization of high-density arrays of P3HT nanopillars on ITO/glass substrates , 2010 .

[147]  J. Hummelen,et al.  Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions , 1995, Science.

[148]  Yang Yang,et al.  High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends , 2005 .

[149]  Zhenan Bao,et al.  Solubility-driven thin film structures of regioregular poly(3-hexyl thiophene) using volatile solvents , 2007 .

[150]  Nelson E. Coates,et al.  Bulk heterojunction solar cells with internal quantum efficiency approaching 100 , 2009 .

[151]  O. Inganäs,et al.  Nanomorphology of Bulk Heterojunction Organic Solar Cells in 2D and 3D Correlated to Photovoltaic Performance , 2009 .

[152]  Yang Yang,et al.  Bandgap and Molecular Level Control of the Low-Bandgap Polymers Based on 3,6-Dithiophen-2-yl-2,5-dihydropyrrolo[3,4-c]pyrrole-1,4-dione toward Highly Efficient Polymer Solar Cells , 2009 .

[153]  Samson A Jenekhe,et al.  Highly efficient solar cells based on poly(3-butylthiophene) nanowires. , 2008, Journal of the American Chemical Society.

[154]  Yue Wu,et al.  Performance enhancement of hybrid solar cells through chemical vapor annealing. , 2010, Nano letters.

[155]  Takhee Lee,et al.  Surface relief gratings on poly(3-hexylthiophene) and fullerene blends for efficient organic solar cells , 2007 .

[156]  Feng Liu,et al.  Polymer semiconductor crystals , 2010 .