A Feedback Interpretation of the Doyle–Fuller–Newman Lithium-Ion Battery Model

The Doyle–Fuller–Newman “psuedo-2-D” electrochemical model of a lithium-ion battery is shown to have a feedback structure when electric double-layer effects are included. This opens the possibility for the model to be rigorously analyzed using input–output systems theory. Several immediate consequences of the feedback structure are discussed, including observability and well-posedness issues, and an application to reduced-order modeling is described.

[1]  Ross Drummond,et al.  Positivity conditions of Lyapunov functions for systems with slope restricted nonlinearities , 2016, 2016 American Control Conference (ACC).

[2]  Javad Mohammadpour,et al.  Control of linear parameter varying systems with applications , 2012 .

[3]  P. Bruce,et al.  Degradation diagnostics for lithium ion cells , 2017 .

[4]  C. A. Desoer,et al.  Nonlinear Systems Analysis , 1978 .

[5]  ガウグラー、ベルント,et al.  The electrochemical system , 2015 .

[6]  Jinho Kim,et al.  Identifiability and Parameter Estimation of the Single Particle Lithium-Ion Battery Model , 2017, IEEE Transactions on Control Systems Technology.

[7]  Andrew Chemistruck,et al.  One-dimensional physics-based reduced-order model of lithium-ion dynamics , 2012 .

[8]  N. van de Wouw,et al.  Model reduction for nonlinear systems with incremental gain or passivity properties , 2013, Autom..

[9]  J. Newman,et al.  Double‐Layer Capacitance in a Dual Lithium Ion Insertion Cell , 1999 .

[10]  Miroslav Krstic,et al.  Battery State Estimation for a Single Particle Model With Electrolyte Dynamics , 2017, IEEE Transactions on Control Systems Technology.

[11]  Teng Zhang,et al.  A Fast, Memory-Efficient Discrete-Time Realization Algorithm for Reduced-Order Li-Ion Battery Models , 2017 .

[12]  Miroslav Krstic,et al.  State-of-Charge estimation from a thermal-electrochemical model of lithium-ion batteries , 2017, Autom..

[13]  M. Doyle,et al.  Simulation and Optimization of the Dual Lithium Ion Insertion Cell , 1994 .

[14]  Ralph E. White,et al.  Single-Particle Model for a Lithium-Ion Cell: Thermal Behavior , 2011 .

[15]  Rolf Findeisen,et al.  Electrochemical Model Based Observer Design for a Lithium-Ion Battery , 2013, IEEE Transactions on Control Systems Technology.

[16]  A. Isidori,et al.  Nonlinear system I , 1999 .

[17]  A. T. Conlisk,et al.  A lithium-ion battery model including electrical double layer effects , 2014 .

[18]  Stephen Duncan,et al.  Lithium-ion battery thermal-electrochemical model-based state estimation using orthogonal collocation and a modified extended Kalman filter , 2015, ArXiv.

[19]  Michel André,et al.  The ARTEMIS European driving cycles for measuring car pollutant emissions. , 2004, The Science of the total environment.

[20]  Chaoyang Wang,et al.  Control oriented 1D electrochemical model of lithium ion battery , 2007 .

[21]  Ross Drummond,et al.  Circuit Synthesis of Electrochemical Supercapacitor Models , 2016, ArXiv.

[22]  N A Chaturvedi,et al.  Modeling, estimation, and control challenges for lithium-ion batteries , 2010, Proceedings of the 2010 American Control Conference.

[23]  Jianqiu Li,et al.  A review on the key issues for lithium-ion battery management in electric vehicles , 2013 .

[24]  James L. Lee,et al.  Discrete-time realization of transcendental impedance models, with application to modeling spherical solid diffusion , 2012 .

[25]  S. Raël,et al.  Including double-layer capacitance in lithium-ion battery mathematical models , 2014 .

[26]  Kandler Smith,et al.  State-space representation of Li-ion battery porous electrode impedance model with balanced model reduction , 2015 .

[27]  Ross Drummond,et al.  Low-Order Mathematical Modelling of Electric Double Layer Supercapacitors Using Spectral Methods , 2014, ArXiv.

[28]  Chaoyang Wang,et al.  Model Order Reduction of 1D Diffusion Systems Via Residue Grouping , 2008 .

[29]  Jasim Ahmed,et al.  Algorithms for Advanced Battery-Management Systems , 2010, IEEE Control Systems.

[30]  Y. Mukaigawa,et al.  Large Deviations Estimates for Some Non-local Equations I. Fast Decaying Kernels and Explicit Bounds , 2022 .

[31]  D.L. Elliott,et al.  Feedback systems: Input-output properties , 1976, Proceedings of the IEEE.

[32]  M. Doyle,et al.  Modeling of Galvanostatic Charge and Discharge of the Lithium/Polymer/Insertion Cell , 1993 .

[33]  Patrick S. Grant,et al.  A two layer electrode structure for improved Li Ion diffusion and volumetric capacity in Li Ion batteries , 2017 .

[34]  Mark W. Verbrugge,et al.  Microstructural Analysis and Mathematical Modeling of Electric Double-Layer Supercapacitors , 2005 .

[35]  G. Plett,et al.  Controls-oriented models of lithium-ion cells having blend electrodes. Part 2: Physics-based reduced-order models , 2017 .

[36]  L. Trefethen Spectral Methods in MATLAB , 2000 .

[37]  G. Dullerud,et al.  A Course in Robust Control Theory: A Convex Approach , 2005 .

[38]  Shriram Santhanagopalan,et al.  Multi-Domain Modeling of Lithium-Ion Batteries Encompassing Multi-Physics in Varied Length Scales , 2011 .