Path-following and augmented Lagrangian methods for contact problems in linear elasticity

A certain regularization technique for contact problems leads to a family of problems that can be solved efficiently using infinite-dimensional semismooth Newton methods, or in this case equivalently, primal-dual active set strategies. We present two procedures that use a sequence of regularized problems to obtain the solution of the original contact problem: first-order augmented Lagrangian, and path-following methods. The first strategy is based on a multiplier-update, while path-following with respect to the regularization parameter uses theoretical results about the path-value function to increase the regularization parameter appropriately. Comprehensive numerical tests investigate the performance of the proposed strategies for both a 2D as well as a 3D contact problem.

[1]  P. Alart,et al.  A mixed formulation for frictional contact problems prone to Newton like solution methods , 1991 .

[2]  Anders Forsgren,et al.  Interior Methods for Nonlinear Optimization , 2002, SIAM Rev..

[3]  Kazufumi Ito,et al.  Semi–Smooth Newton Methods for Variational Inequalities of the First Kind , 2003 .

[4]  J. Schöberl Efficient contact solvers based on domain decomposition techniques , 2001 .

[5]  Weimin Han,et al.  The regularization method for an obstacle problem , 1994 .

[6]  Michael Ulbrich,et al.  Semismooth Newton Methods for Operator Equations in Function Spaces , 2002, SIAM J. Optim..

[7]  J. W. Eastwood,et al.  Springer series in computational physics Editors: H. Cabannes, M. Holt, H.B. Keller, J. Killeen and S.A. Orszag , 1984 .

[8]  R. Kornhuber,et al.  Adaptive multigrid methods for Signorini’s problem in linear elasticity , 2001 .

[9]  Karl Kunisch,et al.  Path-following Methods for a Class of Constrained Minimization Problems in Function Space , 2006, SIAM J. Optim..

[10]  Martin Weiser,et al.  Interior Point Methods in Function Space , 2005, SIAM J. Control. Optim..

[11]  Carsten Carstensen,et al.  Matlab Implementation of the Finite Element Method in Elasticity , 2002, Computing.

[12]  Rolf Krause,et al.  Monotone Multigrid Methods for Signorini's Problem with Friction , 2001 .

[13]  R. Glowinski,et al.  Numerical Methods for Nonlinear Variational Problems , 1985 .

[14]  Kazufumi Ito,et al.  The Primal-Dual Active Set Strategy as a Semismooth Newton Method , 2002, SIAM J. Optim..

[15]  G. Stadler PhD thesis: Infinite-dimensional semi-smooth Newton and augmented Lagrangian methods for friction and contact problems in elasticity , 2004 .

[16]  David Kinderlehrer,et al.  Remarks about Signorini's problem in linear elasticity , 1981 .

[17]  Peter Wriggers,et al.  Computational Contact Mechanics , 2002 .

[18]  J. Haslinger,et al.  On a splitting type algorithm for the numerical realization of contact problems with Coulomb friction , 2002 .

[19]  J. Oden,et al.  Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods , 1987 .

[20]  Carsten Carstensen,et al.  Averaging technique for FE – a posteriori error control in elasticity. Part I: Conforming FEM , 2001 .

[21]  Kazufumi Ito,et al.  Augmented Lagrangian methods for nonsmooth, convex optimization in Hilbert spaces , 2000 .

[22]  Barbara Wohlmuth,et al.  A primal–dual active set strategy for non-linear multibody contact problems , 2005 .

[23]  M. Weiser Function Space Complementarity Methods for Optimal Control Problems , 2001 .

[24]  Dimitri P. Bertsekas,et al.  Constrained Optimization and Lagrange Multiplier Methods , 1982 .