Optical properties of pulsed laser deposited rutile titanium dioxide films on quartz substrates determined by Raman scattering and transmittance spectra

Optical response of rutile TiO2 films grown under different laser energy by pulsed laser deposition has been investigated by Raman scattering and spectral transmittance. Dielectric functions in the photon energy range of 1.24–6.5 eV have been extracted by fitting the experimental data with the Adachi’s model [S. Adachi, Phys. Rev. B 35, 7454 (1987)]. The refractive index dispersion in the transparent region is mainly ascribed to the higher A1-A2 electronic transitions for the rutile TiO2 films. Owing to slightly different crystalline structures and film densities, the optical band gap linearly increases with increasing packing density. The phenomena were confirmed by different theoretical evaluation methods.

[1]  S. Adachi,et al.  Model dielectric constants of GaP, GaAs, GaSb, InP, InAs, and InSb. , 1987, Physical review. B, Condensed matter.

[2]  V. Swamy Size-dependent modifications of the first-order Raman spectra of nanostructured rutile TiO 2 , 2008 .

[3]  Masashi Kawasaki,et al.  Room-Temperature Ferromagnetism in Transparent Transition Metal-Doped Titanium Dioxide , 2001, Science.

[4]  G. He,et al.  Structure, composition and evolution of dispersive optical constants of sputtered TiO2 thin films: effects of nitrogen doping , 2008 .

[5]  Dean-Mo Liu,et al.  Structural evolution and optical properties of TiO2 thin films prepared by thermal oxidation of sputtered Ti films , 2000 .

[6]  Jing Chu,et al.  Composition dependence of dielectric function in ferroelectric BaCoxTi1−xO3 films grown on quartz substrates by transmittance spectra , 2008 .

[7]  Feng Zhang,et al.  Highly oriented rutile-type TiO2 films synthesized by ion beam enhanced deposition , 1997 .

[8]  Ching,et al.  Electronic and optical properties of three phases of titanium dioxide: Rutile, anatase, and brookite. , 1995, Physical review. B, Condensed matter.

[9]  G. Jellison,et al.  Spectroscopic ellipsometry of thin film and bulk anatase (TiO2) , 2003 .

[10]  Tang,et al.  Urbach tail of anatase TiO2. , 1995, Physical review. B, Condensed matter.

[11]  M. Cardona,et al.  Optical Properties and Band Structure of Wurtzite-Type Crystals and Rutile , 1965 .

[12]  H. Ohno,et al.  Zener model description of ferromagnetism in zinc-blende magnetic semiconductors , 2000, Science.

[13]  P. Piseri,et al.  Raman spectroscopy characterization of TiO2 rutile nanocrystals , 2007 .

[14]  J. Chu,et al.  Microstructural and optical investigations of sol-gel derived ferroelectric BaTiO3 nanocrystalline films determined by spectroscopic ellipsometry , 2008 .

[15]  R. D. Robinson,et al.  SIZE-DEPENDENT PROPERTIES OF CEO2-Y NANOPARTICLES STUDIED BY RAMAN SCATTERING , 2001 .

[16]  G. Jellison,et al.  Measurement of the optical functions of uniaxial materials by two-modulator generalized ellipsometry: rutile (TiO(2)). , 1997, Optics letters.

[17]  Role of charge carriers for ferromagnetism in cobalt-doped rutile TiO 2 , 2008, 0805.3748.

[18]  Jian Sun,et al.  Preparation of α-Al2O3 thin films by electron cyclotron resonance plasma-assisted pulsed laser deposition and heat annealing , 2008 .

[19]  Varghese Swamy,et al.  Size-dependent modifications of the Raman spectrum of rutile TiO2 , 2006 .

[20]  J. Sakai,et al.  Room-temperature ferromagnetism observed in undoped semiconducting and insulating oxide thin films , 2006 .

[21]  R. Asahi,et al.  Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides , 2001, Science.

[22]  Chelikowsky,et al.  Structural and electronic properties of titanium dioxide. , 1992, Physical review. B, Condensed matter.

[23]  O. S. Heavens,et al.  Optical Properties of Thin Solid Films , 2011 .

[24]  Adachi Optical properties of AlxGa1-xAs alloys. , 1988, Physical review. B, Condensed matter.

[25]  Jae-Won Park,et al.  Ultraviolet-visible absorption spectra of N-doped TiO2 film deposited on sapphire , 2006 .

[26]  Jun Chen,et al.  UV Raman spectroscopic study on TiO2. I. Phase transformation at the surface and in the bulk. , 2006, The journal of physical chemistry. B.