Hybrid uncertain natural frequency analysis for structures with random and interval fields

Abstract This paper presents a robust non-deterministic free vibration analysis for engineering structures involving hybrid, yet spatially dependent, uncertain system parameters. Distinguished from the conventional hybrid uncertain eigenvalue problem, the concept of interval field is enclosed with random field model such that, both the stochastic and non-stochastic representations of the spatial dependency of the uncertainties are simultaneously incorporated within a unified non-deterministic free vibration analysis. In order to determine the probabilistic characteristics (i.e., means and standard deviations) of the extremities of structural natural frequencies, an extended unified interval stochastic sampling (X-UISS) method is implemented for the purpose of effective hybrid uncertain free vibration analysis. By meticulously blending sharpness-promised interval eigenvalue analysis with stochastic sampling techniques, the stochastic profiles (i.e., probability density functions (PDFs) and the cumulative distribution functions (CDFs)) of the extreme bounds of the structural natural frequencies can be rigorously established by utilizing the adequate statistical inference methods. The applicability and effectiveness of the proposed computational framework are evidently demonstrated through the numerical investigations on various practically motivated engineering structures.

[1]  Dejie Yu,et al.  Unified response probability distribution analysis of two hybrid uncertain acoustic fields , 2014 .

[2]  Hyuk-Chun Noh,et al.  A formulation for stochastic finite element analysis of plate structures with uncertain Poisson's ratio , 2004 .

[3]  Zhan Kang,et al.  Structural reliability assessment based on probability and convex set mixed model , 2009 .

[4]  F. Tin-Loi,et al.  Probabilistic interval analysis for structures with uncertainty , 2010 .

[5]  R. Ghanem,et al.  Probabilistic equivalence and stochastic model reduction in multiscale analysis , 2008 .

[6]  Masanobu Shinozuka,et al.  Monte Carlo solution of structural dynamics , 1972 .

[7]  Xu Han,et al.  A stochastic scaled boundary finite element method , 2016 .

[8]  George Stefanou,et al.  Assessment of spectral representation and Karhunen–Loève expansion methods for the simulation of Gaussian stochastic fields , 2007 .

[9]  Giuseppe Muscolino,et al.  Natural frequencies of structures with interval parameters , 2015 .

[10]  Xiaoping Du Reliability‐based design optimization with dependent interval variables , 2012 .

[11]  C. Jiang,et al.  Structural reliability analysis using non-probabilistic convex model , 2013 .

[12]  Giuseppe Muscolino,et al.  One-dimensional heterogeneous solids with uncertain elastic modulus in presence of long-range interactions: Interval versus stochastic analysis , 2013 .

[13]  Jie Liu,et al.  Probability-interval hybrid reliability analysis for cracked structures existing epistemic uncertainty , 2013 .

[14]  Mircea Grigoriu,et al.  STOCHASTIC FINITE ELEMENT ANALYSIS OF SIMPLE BEAMS , 1983 .

[15]  Marcin Kamiński,et al.  Generalized perturbation-based stochastic finite element method in elastostatics , 2007 .

[16]  Dejie Yu,et al.  Change-of-variable interval stochastic perturbation method for hybrid uncertain structural-acoustic systems with random and interval variables , 2014 .

[17]  R. Ibrahim Structural Dynamics with Parameter Uncertainties , 1987 .

[18]  Andy J. Keane,et al.  An approximate solution scheme for the algebraic random Eigenvalue problem , 2003 .

[19]  Huinan Leng,et al.  Computing bounds to real eigenvalues of real‐interval matrices , 2008 .

[20]  Manolis Papadrakakis,et al.  Structural reliability analyis of elastic-plastic structures using neural networks and Monte Carlo simulation , 1996 .

[21]  Liping Chen,et al.  A Chebyshev interval method for nonlinear dynamic systems under uncertainty , 2013 .

[22]  A. Olsson,et al.  On Latin hypercube sampling for structural reliability analysis , 2003 .

[23]  Manolis Papadrakakis,et al.  Robust and efficient methods for stochastic finite element analysis using Monte Carlo simulation , 1996 .

[24]  Chao Jiang,et al.  Reliability-based design optimization of structural systems under hybrid probabilistic and interval model , 2015 .

[25]  Cv Clemens Verhoosel,et al.  Iterative solution of the random eigenvalue problem with application to spectral stochastic finite element systems , 2006 .

[26]  Z. Kang,et al.  Continuum topology optimization with non-probabilistic reliability constraints based on multi-ellipsoid convex model , 2009 .

[27]  W. Desmet,et al.  Interval fields to represent uncertainty on the output side of a static FE analysis , 2013 .

[28]  Sondipon Adhikari,et al.  Random matrix eigenvalue problems in structural dynamics , 2007 .

[29]  Nong Zhang,et al.  Stochastic interval analysis of natural frequency and mode shape of structures with uncertainties , 2014 .

[30]  Wei Gao Interval natural frequency and mode shape analysis for truss structures with interval parameters , 2006 .

[31]  G. S. Szekely,et al.  Computational procedure for a fast calculation of eigenvectors and eigenvalues of structures with random properties , 2001 .

[32]  Giuseppe Muscolino,et al.  Static analysis of Euler-Bernoulli beams with interval Young's modulus , 2015 .

[33]  C. Jiang,et al.  Non-probabilistic convex model process: A new method of time-variant uncertainty analysis and its application to structural dynamic reliability problems , 2014 .

[34]  Wei Gao,et al.  Uncertain static plane stress analysis with interval fields , 2017 .

[35]  C. Jiang,et al.  A Hybrid Reliability Approach Based on Probability and Interval for Uncertain Structures , 2012 .

[36]  Dejie Yu,et al.  An interval random perturbation method for structural‐acoustic system with hybrid uncertain parameters , 2014 .

[37]  Dongbin Xiu,et al.  Numerical approach for quantification of epistemic uncertainty , 2010, J. Comput. Phys..

[38]  Sondipon Adhikari,et al.  Random Eigenvalue Problems in Structural Dynamics: An Experimental Investigation , 2009 .

[39]  Roger Ghanem,et al.  Efficient characterization of the random eigenvalue problem in a polynomial chaos decomposition , 2007 .

[40]  Karim Abdel-Malek,et al.  Fuzzy tolerance multilevel approach for structural topology optimization , 2006 .

[41]  Subrata Chakraborty,et al.  Probabilistic safety analysis of structures under hybrid uncertainty , 2007 .

[42]  Mircea Grigoriu,et al.  Stochastic reduced order models for random vectors: Application to random eigenvalue problems , 2013 .

[43]  Di Wu,et al.  Probabilistic interval stability assessment for structures with mixed uncertainty , 2016 .

[44]  Di Wu,et al.  Robust stability analysis of structures with uncertain parameters using mathematical programming approach , 2014 .

[45]  F. Tin-Loi,et al.  Hybrid probabilistic interval analysis of bar structures with uncertainty using a mixed perturbation Monte-Carlo method , 2011 .

[46]  Wing Kam Liu,et al.  Probabilistic finite elements for nonlinear structural dynamics , 1986 .

[47]  G. Falsone,et al.  A new approach for the stochastic analysis of finite element modelled structures with uncertain parameters , 2002 .

[48]  E. Oja,et al.  On stochastic approximation of the eigenvectors and eigenvalues of the expectation of a random matrix , 1985 .

[49]  W. Gao,et al.  Interval spectral stochastic finite element analysis of structures with aggregation of random field and bounded parameters , 2016 .

[50]  Jie Liu,et al.  Interval process model and non-random vibration analysis , 2016 .

[51]  Christian Soize Stochastic modeling of uncertainties in computational structural dynamics—Recent theoretical advances , 2013 .

[52]  G. Stefanou The stochastic finite element method: Past, present and future , 2009 .

[53]  Dejie Yu,et al.  Hybrid uncertain analysis for structural–acoustic problem with random and interval parameters , 2013 .

[54]  C. Jiang,et al.  Structural reliability analysis based on random distributions with interval parameters , 2011 .

[55]  Di Wu,et al.  Robust assessment of collapse resistance of structures under uncertain loads based on Info-Gap model , 2015 .

[56]  Taehyo Park,et al.  Monte Carlo simulation-compatible stochastic field for application to expansion-based stochastic finite element method , 2006 .

[57]  Alba Sofi,et al.  A response surface approach for the static analysis of stochastic structures with geometrical nonlinearities , 2003 .

[58]  Jean-Pierre Coyette,et al.  Modal approaches for the stochastic finite element analysis of structures with material and geometric uncertainties , 2003 .

[59]  George Stefanou,et al.  Stochastic finite element analysis of composite structures based on material microstructure , 2015 .

[60]  Z. Luo,et al.  A new uncertain analysis method and its application in vehicle dynamics , 2015 .

[61]  Robert L. Mullen,et al.  Natural Frequencies of a Structure with Bounded Uncertainty , 2006 .

[62]  Liping Chen,et al.  Interval uncertain method for multibody mechanical systems using Chebyshev inclusion functions , 2013 .

[63]  G. Schuëller,et al.  Uncertainty analysis of complex structural systems , 2009 .

[64]  Mircea Grigoriu,et al.  On the spectral representation method in simulation , 1993 .

[65]  Marcin Kamiński,et al.  Uncertainty in effective elastic properties of particle filled polymers by the Monte-Carlo simulation , 2015 .

[66]  Baizhan Xia,et al.  Dynamic response analysis of structure under time-variant interval process model , 2016 .

[67]  Dejie Yu,et al.  Probabilistic Interval Perturbation Methods for Hybrid Uncertain Acoustic Field Prediction , 2013 .

[68]  Di Wu,et al.  Hybrid uncertain static analysis with random and interval fields , 2017 .