An analysis of the cable properties of frog ventricular myocardium.

1. The passive and active electrical parameters of frog ventricular myocardium have been measured. 2. The cytoplasmic resistivity has been determined by following changes in the resistance of a micro‐electrode on penetration of a cell. 3. Unidimensional cable analysis using direct and alternating currents revealed the presence of a single time constant attributed to the surface membrane. 4. Longitudinal impedance measurements indicate that a second time constant is present in the intracellular pathway. 5. The results indicate that the resistance between cells is low so that action potentials can propagate from cell to cell by local circuits. 6. A three‐dimensional cable analysis has also been carried out and compared to a simplified mathematical model which is presented in an Appendix and which closely approximates the experimental situation.

[1]  M. Lieberman,et al.  Heart: excitation and contraction. , 1971, Annual review of physiology.

[2]  A. Hodgkin,et al.  Effect of Diameter on the Electrical Constants of Frog Skeletal Muscle Fibres , 1970, Nature.

[3]  J. Trank,et al.  Limitations of the Double Sucrose Gap Voltage Clamp Technique in Tension‐Voltage Determinations on Frog Atrial Muscle , 1976, Circulation research.

[4]  I. Tanaka,et al.  On The Electrotonic Spread in Cardiac Muscle of the Mouse , 1966, The Journal of general physiology.

[5]  G. Falk,et al.  Linear electrical properties of striated muscle fibres observed with intracellular electrodes , 1964, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[6]  R. Eisenberg,et al.  Three-dimensional electrical field problems in physiology , 1970 .

[7]  H. Curtis,et al.  ELECTRIC IMPEDANCE OF NITELLA DURING ACTIVITY , 1938, The Journal of general physiology.

[8]  L. Clerc Directional differences of impulse spread in trabecular muscle from mammalian heart. , 1976, The Journal of physiology.

[9]  M. Goto,et al.  A study of the membrane constants in the dog myocardium. , 1970, The Japanese Journal of Physiology.

[10]  R. Niedergerke,et al.  Structures of physiological interest in the frog heart ventricle. , 1972, Journal of cell science.

[11]  M. Ohba,et al.  Impedance components in longitudinal direction in the guinea‐pig taenia coli. , 1976, The Journal of physiology.

[12]  安部 隆二 Some observations on the fine structure of the human liver in congenital biliary atresia , 1968 .

[13]  D. B. Heppner,et al.  Simulation of electrical interaction of cardiac cells. , 1970, Biophysical journal.

[14]  Y. Sakamoto Membrane Characteristics of the Canine Papillary Muscle Fiber , 1969, The Journal of general physiology.

[15]  A. Duval,et al.  Voltage clamp with double sucrose gap technique. External series resistance compensation. , 1976, Biophysical journal.

[16]  W. Trautwein,et al.  The Structural Implications of the Linear Electrical Properties of Cardiac Purkinje Strands , 1970, The Journal of general physiology.

[17]  E. Benson,et al.  THE ULTRASTRUCTURE OF FROG VENTRICULAR CARDIAC MUSCLE AND ITS RELATIONSHIP TO MECHANISMS OF EXCITATION-CONTRACTION COUPLING , 1968, The Journal of cell biology.

[18]  P. Fatt An analysis of the transverse electrical impedance of striated muscle , 1964, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[19]  J. Moore,et al.  Axon voltage-clamp simulations. A multicellular preparation. , 1975, Biophysical journal.

[20]  F. I. Bonke,et al.  Passive electrical properties of atrial fibers of the rabbit heart , 1973, Pflügers Archiv.

[21]  E. Page,et al.  The surface area of sheep cardiac Purkinje fibres , 1972, The Journal of physiology.

[22]  C. Nicholson Electric current flow in excitable cells J. J. B. Jack, D. Noble &R. W. Tsien Clarendon Press, Oxford (1975). 502 pp., £18.00 , 1976, Neuroscience.

[23]  R. Chapman,et al.  The dependence of the contractile force generated by frog auricular trabeculae upon the external calcium concentration , 1971, The Journal of physiology.

[24]  F. Sjöstrand,et al.  The ultrastructure of the intercalated discs of frog, mouse and guinea pig cardiac muscle. , 1958, Journal of ultrastructure research.

[25]  A. Hodgkin,et al.  The diffusion of radiopotassium across intercalated disks of mammalian cardiac muscle , 1966, The Journal of physiology.

[26]  D. Noble,et al.  The influence of non‐uniformity on the analysis of potassium currents in heart muscle. , 1976, The Journal of physiology.

[27]  A. Hodgkin,et al.  The electrical constants of a crustacean nerve fibre , 1946, Proceedings of the Royal Society of London. Series B - Biological Sciences.

[28]  W. Nayler,et al.  SOME OBSERVATIONS ON THE FINE STRUCTURE AND METABOLIC ACTIVITY OF NORMAL AND GLYCERINATED VENTRICULAR MUSCLE OF TOAD , 1964, The Journal of cell biology.

[29]  Herman P. Schwan,et al.  CHAPTER 6 – DETERMINATION OF BIOLOGICAL IMPEDANCES1 , 1963 .

[30]  L. Barr,et al.  Propagation of Action Potentials and the Structure of the Nexus in Cardiac Muscle , 1965, The Journal of general physiology.

[31]  A. Hodgkin,et al.  The effect of diameter on the electrical constants of frog skeletal muscle fibres , 1972 .

[32]  H A Fozzard,et al.  Membrane capacity of the cardiac Purkinje fibre , 1966, The Journal of physiology.

[33]  S. Weidmann Electrical constants of trabecular muscle from mammalian heart , 1970, The Journal of physiology.

[34]  R. Niedergerke Movements of Ca in frog heart ventricles at rest and during contractures , 1963, The Journal of physiology.

[35]  S. Hagiwara,et al.  Capacity of muscle fiber membrane. , 1957, The American journal of physiology.

[36]  P. Brink,et al.  The resistance of the septum of the medium giant axon of the earthworm , 1977, The Journal of general physiology.

[37]  K. Matsuda,et al.  Electrophysiological properties of the canine ventricular fiber. , 1966, The Japanese journal of physiology.

[38]  Kenneth S. Cole,et al.  LONGITUDINAL IMPEDANCE OF THE SQUID GIANT AXON , 1941, The Journal of general physiology.