Estimation of the variance of sample means based on nonstationary spatial data with varying expected values

Subsampling and block resampling methods have been suggested in the literature to nonparametrically estimate the variance of some statistic computed from spatial data. Usually stationary data are required. However, in empirical applications, the assump­ tion of stationarity can often be rejected. This paper proposes nonparametric methods to estimate the variance of sample means based on nonstationary spatial data using subsam­ pling. It is assumed that data is observed on a rectangular lattice in some subregion of R 2. The kind of data we consider is of the following type: The information in the different picture elements (pixels) of the lattice are allowed to come from different distributions, with smoothly varying expected values, or with expected values decomposed additively into directional components. Furthermore, pixels are assumed to be locally dependent, and the dependence structure is allowed to differ over the lattice. Consistent variance esti­ mators for sample means, and convergence rates in mean square, are provided under these assumptions. An example with applications to forestry, using satellite data, is discussed.

[1]  Peter Hall Resampling a coverage pattern , 1985 .

[2]  Antonio Possolo,et al.  Subsampling a random field , 1991 .

[3]  Joseph P. Romano,et al.  Large Sample Confidence Regions Based on Subsamples under Minimal Assumptions , 1994 .

[4]  Edward Carlstein,et al.  Nonparametric Estimation of the Moments of a General Statistic Computed from Spatial Data , 1994 .

[5]  Göran Kempe Hjälpmedel för bestämning av slutenhet i plant- och ungskog , 1995 .

[6]  Peter Holmgren,et al.  Skoglig planering på amerikanska västkusten , 1995 .

[7]  V. V. Petrov Limit Theorems of Probability Theory: Sequences of Independent Random Variables , 1995 .

[8]  M. Sherman Variance Estimation for Statistics Computed from Spatial Lattice Data , 1996 .

[9]  Michiel von Kerkvoorde A sequential approach in mathematical programming to include spatial aspects of biodiversity in long range forest management planning , 1996 .

[10]  Göran Ståhl,et al.  Om detektering av förändringar av populationer i begränsade områden , 1997 .

[11]  Textur i flygbilder för skattning av beståndsegenskaper , 1997 .

[12]  Torgny Lind Quantifying the area of edge zones in Swedish forest to assess the impact of nature conservation on timber yields , 1998 .

[13]  Ulrika Dahlberg,et al.  Fältinstruktion för och erfarenheter från vegetationsinventering i Abisko, sommaren 1997 , 1998 .

[14]  Bo Ohlsson,et al.  People's options on forest land use , 1998 .

[15]  Heather Reese,et al.  Using Landsat TM and NFI data to estimate wood volume, tree biomass and stand age in Dalarna , 1999 .

[16]  Jörgen Wallerman,et al.  Plot-level stem volume estimation and tree species discrimination with CASI remote sensing , 1999 .

[17]  M. Nilsson,et al.  Regional forest biomass and wood volume estimation using satellite data and ancillary data , 1999 .

[18]  Nils Broman,et al.  Mätfel i provträdsvariabler och dess inverkan på precision och noggrannhet i volymskattningar , 1999 .

[19]  Per Nilsson,et al.  Skogsskötseln vid 90-talets mitt - läge och trender , 1999 .

[20]  Hans Petersson,et al.  Biomassafunktioner för trädfaktorer av tall, gran och björk i Sverige , 1999 .

[21]  Kenneth Nyström Funktioner för att skatta höjdtillväxten i ungskog , 2000 .

[22]  H. Olsson,et al.  Remote sensing aided monitoring of non-timber forest resources , 2000 .

[23]  Gustaf von Segebaden Komplement till rikstaxen 75 år , 2000 .

[24]  Heather Reese,et al.  Wood volume estimations for Alvsbyn Kommun using SPOT satellite data and NFI plots , 2000 .

[25]  Per Löfgren,et al.  Metodutveckling för vegetationsövervakning i fjällen , 2000 .

[26]  Torgny Lind Kolinnehåll i skog och mark i Sverige , 2001 .

[27]  Resampling non-homogeneous spatial data with smoothly varying mean values , 2001 .

[28]  Magnus Ekström,et al.  On the estimation of the distribution of sample means based on non-stationary spatial data , 2001 .

[29]  Hampus Holmstrom,et al.  Averaging Absolute GPS Positionings Made Underneath Different Forest Canopies - A Splendid Example of Bad Timing in Research , 2001 .

[30]  Magnus Ekström NONPARAMETRIC ESTIMATION OF THE VARIANCE OF SAMPLE MEANS BASED ON NONSTATIONARY SPATIAL DATA , 2002 .