The NAC transcription factors SNAP1/2/3/4 are central regulators mediating high nitrogen responses in mature nodules of soybean

[1]  Hui Zhu,et al.  GmNAC039 and GmNAC018 activate the expression of cysteine protease genes to promote soybean nodule senescence. , 2023, The Plant cell.

[2]  G. Ning,et al.  A transcription factor of the NAC family regulates nitrate-induced legume nodule senescence. , 2023, The New phytologist.

[3]  Mineko Konishi,et al.  NIN-like protein 7 transcription factor is a plant nitrate sensor , 2022, Science.

[4]  Xia Li,et al.  GmNAC181 promotes symbiotic nodulation and salt tolerance of nodulation by directly regulating GmNINa expression in soybean. , 2022, The New phytologist.

[5]  Yuefeng Guan,et al.  Combination of two multiplex genome-edited soybean varieties enables customization of protein functional properties. , 2022, Molecular plant.

[6]  K. Miura,et al.  Nitrate transport via NRT2.1 mediates NIN-LIKE PROTEIN-dependent suppression of root nodulation in Lotus japonicus , 2022, The Plant cell.

[7]  Tomás C. Moyano,et al.  Spatiotemporal analysis identifies ABF2 and ABF3 as key hubs of endodermal response to nitrate , 2022, Proceedings of the National Academy of Sciences.

[8]  Suyu Jiang,et al.  NIN-like protein transcription factors regulate leghemoglobin genes in legume nodules , 2021, Science.

[9]  K. Miura,et al.  Different DNA-binding specificities of NLP and NIN transcription factors underlie nitrate-induced control of root nodulation , 2021, The Plant cell.

[10]  J. Stougaard,et al.  Nitrate inhibits nodule organogenesis through inhibition of cytokinin biosynthesis in Lotus japonicus , 2020, bioRxiv.

[11]  P. Gresshoff,et al.  Characterisation of Medicago truncatula CLE34 and CLE35 in nitrate and rhizobia regulation of nodulation. , 2020, The New phytologist.

[12]  G. Gao,et al.  Transfer cells mediate nitrate uptake to control root nodule symbiosis , 2020, Nature Plants.

[13]  H. Liao,et al.  Excess nitrate induces nodule greening and reduces transcript and protein expression levels of soybean leghaemoglobins. , 2020, Annals of botany.

[14]  M. Udvardi,et al.  Celebrating 20 Years of Genetic Discoveries in Legume Nodulation and Symbiotic Nitrogen Fixation[OPEN] , 2019, Plant Cell.

[15]  Dong Wang,et al.  Generation of a multiplex mutagenesis population via pooled CRISPR‐Cas9 in soya bean , 2019, Plant biotechnology journal.

[16]  Barry Demchak,et al.  Cytoscape Automation: empowering workflow-based network analysis , 2019, Genome Biology.

[17]  Steven L Salzberg,et al.  Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype , 2019, Nature Biotechnology.

[18]  Otávio J. B. Brustolini,et al.  Revisiting the Soybean GmNAC Superfamily , 2018, Front. Plant Sci..

[19]  K. Mysore,et al.  NIN interacts with NLPs to mediate nitrate inhibition of nodulation in Medicago truncatula , 2018, Nature Plants.

[20]  K. Mysore,et al.  NIN interacts with NLPs to mediate nitrate inhibition of nodulation in Medicago truncatula , 2018, Nature Plants.

[21]  Takuya Suzaki,et al.  Nitrate-mediated control of root nodule symbiosis. , 2018, Current opinion in plant biology.

[22]  P. Gresshoff,et al.  Legume nodulation: The host controls the party. , 2018, Plant, cell & environment.

[23]  Joel L. Sachs,et al.  Legumes versus rhizobia: a model for ongoing conflict in symbiosis. , 2018, The New phytologist.

[24]  Takuya Suzaki,et al.  Two negative regulatory systems of root nodule symbiosis - how are symbiotic benefits and costs balanced? , 2018, Plant & cell physiology.

[25]  K. Miura,et al.  A NIN-LIKE PROTEIN mediates nitrate-induced control of root nodule symbiosis in Lotus japonicus , 2018, Nature Communications.

[26]  Chao Zhang,et al.  Discovery of nitrate–CPK–NLP signalling in central nutrient–growth networks , 2017, Nature.

[27]  Zhou Du,et al.  agriGO v2.0: a GO analysis toolkit for the agricultural community, 2017 update , 2017, Nucleic Acids Res..

[28]  Z. Shan,et al.  RNA-Seq analysis of nodule development at five different developmental stages of soybean (Glycine max) inoculated with Bradyrhizobium japonicum strain 113-2 , 2017, Scientific Reports.

[29]  Sun-Young Lee,et al.  Arabidopsis AtNAP functions as a negative regulator via repression of AREB1 in salt stress response , 2017, Planta.

[30]  J. Murray,et al.  Nitrogen sensing in legumes , 2016, Journal of experimental botany.

[31]  G. Krouk,et al.  Nitrate Transport, Sensing, and Responses in Plants. , 2016, Molecular plant.

[32]  Fidel Ramírez,et al.  deepTools2: a next generation web server for deep-sequencing data analysis , 2016, Nucleic Acids Res..

[33]  Riddhi Datta,et al.  Glutathione Regulates 1-Aminocyclopropane-1-Carboxylate Synthase Transcription via WRKY33 and 1-Aminocyclopropane-1-Carboxylate Oxidase by Modulating Messenger RNA Stability to Induce Ethylene Synthesis during Stress1[OPEN] , 2015, Plant Physiology.

[34]  Tomás C. Moyano,et al.  Transcriptional networks in the nitrate response of Arabidopsis thaliana. , 2015, Current opinion in plant biology.

[35]  S. Salzberg,et al.  StringTie enables improved reconstruction of a transcriptome from RNA-seq reads , 2015, Nature Biotechnology.

[36]  W. Huber,et al.  Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 , 2014, Genome Biology.

[37]  Felipe F. Aceituno,et al.  Systems approach identifies TGA1 and TGA4 transcription factors as important regulatory components of the nitrate response of Arabidopsis thaliana roots. , 2014, The Plant journal : for cell and molecular biology.

[38]  S. Jackson,et al.  The soybean (Glycine max) nodulation-suppressive CLE peptide, GmRIC1, functions interspecifically in common white bean (Phaseolus vulgaris), but not in a supernodulating line mutated in the receptor PvNARK. , 2014, Plant biotechnology journal.

[39]  T. Bisseling,et al.  Adjustment of Host Cells for Accommodation of Symbiotic Bacteria: Vacuole Defunctionalization, HOPS Suppression, and TIP1g Retargeting in Medicago[C][W][OPEN] , 2014, Plant Cell.

[40]  M. Libault,et al.  The Carbon-Nitrogen Balance of the Nodule and Its Regulation under Elevated Carbon Dioxide Concentration , 2014, BioMed research international.

[41]  G. Maróti,et al.  Nitrogen-fixing Rhizobium-legume symbiosis: are polyploidy and host peptide-governed symbiont differentiation general principles of endosymbiosis? , 2014, Front. Microbiol..

[42]  F. Baldacci,et al.  Involvement of papain and legumain proteinase in the senescence process of Medicago truncatula nodules. , 2014, The New phytologist.

[43]  Björn Usadel,et al.  Trimmomatic: a flexible trimmer for Illumina sequence data , 2014, Bioinform..

[44]  T. Tanabata,et al.  Effect of Nitrate on Nodule and Root Growth of Soybean (Glycine max (L.) Merr.) , 2014, International journal of molecular sciences.

[45]  K. Dittert,et al.  An RNA Sequencing Transcriptome Analysis Reveals Novel Insights into Molecular Aspects of the Nitrate Impact on the Nodule Activity of Medicago truncatula1[W] , 2013, Plant Physiology.

[46]  S. Whitham,et al.  Overexpression of a soybean nuclear localized type-III DnaJ domain-containing HSP40 reveals its roles in cell death and disease resistance. , 2013, The Plant journal : for cell and molecular biology.

[47]  Kevin W Eliceiri,et al.  NIH Image to ImageJ: 25 years of image analysis , 2012, Nature Methods.

[48]  F. Ariel,et al.  Dual involvement of a Medicago truncatula NAC transcription factor in root abiotic stress response and symbiotic nodule senescence. , 2012, The Plant journal : for cell and molecular biology.

[49]  Steven L Salzberg,et al.  Fast gapped-read alignment with Bowtie 2 , 2012, Nature Methods.

[50]  S. Gan,et al.  An Abscisic Acid-AtNAP Transcription Factor-SAG113 Protein Phosphatase 2C Regulatory Chain for Controlling Dehydration in Senescing Arabidopsis Leaves1[C][W][OA] , 2011, Plant Physiology.

[51]  Xiaoping Zhou,et al.  WRKY22 transcription factor mediates dark-induced leaf senescence in Arabidopsis , 2011, Molecules and cells.

[52]  G. Krouk,et al.  Nitrate signaling: adaptation to fluctuating environments. , 2010, Current opinion in plant biology.

[53]  C. Glass,et al.  Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. , 2010, Molecular cell.

[54]  R. Bligny,et al.  Metabolic and structural rearrangement during dark-induced autophagy in soybean (Glycine max L.) nodules: an electron microscopy and 31P and 13C nuclear magnetic resonance study , 2010, Planta.

[55]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[56]  S. Horvath,et al.  WGCNA: an R package for weighted correlation network analysis , 2008, BMC Bioinformatics.

[57]  Clifford A. Meyer,et al.  Model-based Analysis of ChIP-Seq (MACS) , 2008, Genome Biology.

[58]  D. Herridge,et al.  Global inputs of biological nitrogen fixation in agricultural systems , 2008, Plant and Soil.

[59]  N. Ohtake,et al.  Quick and reversible inhibition of soybean root nodule growth by nitrate involves a decrease in sucrose supply to nodules. , 2003, Journal of experimental botany.

[60]  Imre E Somssich,et al.  Targets of AtWRKY6 regulation during plant senescence and pathogen defense. , 2002, Genes & development.

[61]  Thomas D. Schmittgen,et al.  Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. , 2001, Methods.

[62]  T. Boller,et al.  Trehalose becomes the most abundant non-structural carbohydrate during senescence of soybean nodules. , 2001, Journal of experimental botany.

[63]  OUP accepted manuscript , 2022, The Plant Cell.

[64]  P. Gresshoff,et al.  Molecular analysis of legume nodule development and autoregulation. , 2010, Journal of integrative plant biology.

[65]  S. Tabata,et al.  Nod factor/nitrate-induced CLE genes that drive HAR1-mediated systemic regulation of nodulation. , 2009, Plant & cell physiology.

[66]  Hilde van der Togt,et al.  Publisher's Note , 2003, J. Netw. Comput. Appl..

[67]  J. Vessey,et al.  In search of the mechanism of nitrate inhibition of nitrogenase activity in legume nodules : recent developments , 1992 .

[68]  P. Wong,et al.  Inhibition of legume nodule formation and N2 fixation by nitrate , 1988 .

[69]  Thomas D. Schmittgen,et al.  Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2 2 DD C T Method , 2022 .