Influence of femoral head size on impingement, dislocation and stress distribution in total hip replacement.

Dislocation remains a serious complication of total hip replacement. An insufficient range of motion can lead to impingement of the prosthetic neck on the acetabular cup. Together with the initiation of subluxation and dislocation, recurrent impingement can cause material failure in the liner. The objective of this study was to generate a validated finite element (FE) model capable of predicting the dislocation stability of different femoral head sizes with regard to impingement in different implant positions as well as the corresponding stress distribution in the liner. In order to cover posterior and anterior dislocation, two total hip dislocation associated manoeuvres were simulated using a three-dimensional nonlinear finite element model. The dislocation stability of two head sizes was determined numerically and experimentally. After validation, the FE model was used to analyse the dislocation stability of four different head sizes in variable implant positions. Range of motion (ROM) until impingement, the resisting moment that was developed and ROM until dislocation were evaluated. Additionally, stress distribution within the polyethylene liner during impingement and subluxation was determined. For both dislocation modes, a cup position of 45 degrees lateral abduction and 15 degrees up to 30 degrees anteversion resulted in appropriate ROM and dislocation stability. In general, larger head diameters revealed an increase in ROM and higher resisting moments. Stress analysis showed decreased contact pressures at the egress site of the liners with the larger inner diameters during subluxation. The analysis shows that an optimal implant position and a larger head diameter can reduce the risk of dislocation induced by impingement. The finite element model that was developed enables simplification of design variations compared to experimental studies since prototyping and assembling are replaced by prompt numerical simulation.

[1]  G. Willmann Wie sicher sind keramische Kugelköpfe für Hüftendoprothesen , 1996 .

[2]  G. Bergmann,et al.  Hip joint loading during walking and running, measured in two patients. , 1993, Journal of biomechanics.

[3]  E. Steinhauser,,et al.  Computergestützte Bewegungssimulation an Hüftendoprothesen mit Keramik-Keramik-Gleitpaarung. Analyse der Einflussparameter Implantat-Design und Position , 2002 .

[4]  F. Kummer,et al.  The effect of acetabular cup orientations on limiting hip rotation. , 1999, The Journal of arthroplasty.

[5]  D. McCollum,et al.  Dislocation after total hip arthroplasty. Causes and prevention. , 1990, Clinical orthopaedics and related research.

[6]  E Steinhauser,et al.  Methode zur Evaluierung von Einflußfaktoren auf die Luxationsstabilität von künstlichen Hüftgelenken / Method for the Evaluation of Factors Influencing the Dislocation Stability of Total Hip Endoprotheses , 2004, Biomedizinische Technik. Biomedical engineering.

[7]  D J Berry,et al.  Epidemiology of instability after total hip replacement. , 2001, The Orthopedic clinics of North America.

[8]  B. Espehaug,et al.  Femoral head size is a risk factor for total hip luxationA study of 42,987 primary hip arthroplasties from the Norwegian Arthroplasty Register , 2003, Acta orthopaedica Scandinavica.

[9]  John J Callaghan,et al.  Kinematics, kinetics, and finite element analysis of commonplace maneuvers at risk for total hip dislocation. , 2003, Journal of biomechanics.

[10]  T D Brown,et al.  A Finite Element Analysis of Factors Influencing Total Hip Dislocation , 1998, Clinical orthopaedics and related research.

[11]  John J Callaghan,et al.  Implementing capsule representation in a total hip dislocation finite element model. , 2004, The Iowa orthopaedic journal.

[12]  A. Wang,et al.  Effect of contact stress on friction and wear of ultra-high molecular weight polyethylene in total hip replacement , 2001, Proceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine.

[13]  R. Bader,et al.  Differences between the wear couples metal-on-polyethylene and ceramic-on-ceramic in the stability against dislocation of total hip replacement , 2004, Journal of materials science. Materials in medicine.

[14]  V O Saikko,et al.  A Three-Axis Hip Joint Simulator for Wear and Friction Studies on Total Hip Prostheses , 1996, Proceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine.

[15]  B. Manaster,et al.  From the RSNA refresher courses. Total hip arthroplasty: radiographic evaluation. , 1996, Radiographics : a review publication of the Radiological Society of North America, Inc.

[16]  John A. Tesk,et al.  Mechanical Properties of Ultra High Molecular Weight Polyethylene NIST Reference Material RM 8456 , 2001 .

[17]  T. Brown,et al.  Experimental and computational simulation of total hip arthroplasty dislocation. , 2001, The Orthopedic clinics of North America.

[18]  L.-j. Yuan,et al.  Dislocation after total hip arthroplasty , 1999, Archives of Orthopaedic and Trauma Surgery.

[19]  Benjamin J Fregly,et al.  Experimental evaluation of an elastic foundation model to predict contact pressures in knee replacements. , 2003, Journal of biomechanics.

[20]  W. Harris,et al.  Femoral head sizes larger than 32 mm against highly cross-linked polyethylene. , 2002, Clinical orthopaedics and related research.

[21]  Philip C. Noble,et al.  The Effect of Femoral Component Head Size on Posterior Dislocation of the Artificial Hip Joint* , 2000, The Journal of bone and joint surgery. American volume.

[22]  B. Masri,et al.  Treatment of hip instability. , 2001, The Orthopedic clinics of North America.