Influence of femoral head size on impingement, dislocation and stress distribution in total hip replacement.
暂无分享,去创建一个
Daniel Kluess | Klaus-Peter Schmitz | Rainer Bader | Wolfram Mittelmeier | R. Bader | D. Kluess | W. Mittelmeier | K. Schmitz | H. Martin | Heiner Martin
[1] G. Willmann. Wie sicher sind keramische Kugelköpfe für Hüftendoprothesen , 1996 .
[2] G. Bergmann,et al. Hip joint loading during walking and running, measured in two patients. , 1993, Journal of biomechanics.
[3] E. Steinhauser,,et al. Computergestützte Bewegungssimulation an Hüftendoprothesen mit Keramik-Keramik-Gleitpaarung. Analyse der Einflussparameter Implantat-Design und Position , 2002 .
[4] F. Kummer,et al. The effect of acetabular cup orientations on limiting hip rotation. , 1999, The Journal of arthroplasty.
[5] D. McCollum,et al. Dislocation after total hip arthroplasty. Causes and prevention. , 1990, Clinical orthopaedics and related research.
[6] E Steinhauser,et al. Methode zur Evaluierung von Einflußfaktoren auf die Luxationsstabilität von künstlichen Hüftgelenken / Method for the Evaluation of Factors Influencing the Dislocation Stability of Total Hip Endoprotheses , 2004, Biomedizinische Technik. Biomedical engineering.
[7] D J Berry,et al. Epidemiology of instability after total hip replacement. , 2001, The Orthopedic clinics of North America.
[8] B. Espehaug,et al. Femoral head size is a risk factor for total hip luxationA study of 42,987 primary hip arthroplasties from the Norwegian Arthroplasty Register , 2003, Acta orthopaedica Scandinavica.
[9] John J Callaghan,et al. Kinematics, kinetics, and finite element analysis of commonplace maneuvers at risk for total hip dislocation. , 2003, Journal of biomechanics.
[10] T D Brown,et al. A Finite Element Analysis of Factors Influencing Total Hip Dislocation , 1998, Clinical orthopaedics and related research.
[11] John J Callaghan,et al. Implementing capsule representation in a total hip dislocation finite element model. , 2004, The Iowa orthopaedic journal.
[12] A. Wang,et al. Effect of contact stress on friction and wear of ultra-high molecular weight polyethylene in total hip replacement , 2001, Proceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine.
[13] R. Bader,et al. Differences between the wear couples metal-on-polyethylene and ceramic-on-ceramic in the stability against dislocation of total hip replacement , 2004, Journal of materials science. Materials in medicine.
[14] V O Saikko,et al. A Three-Axis Hip Joint Simulator for Wear and Friction Studies on Total Hip Prostheses , 1996, Proceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine.
[15] B. Manaster,et al. From the RSNA refresher courses. Total hip arthroplasty: radiographic evaluation. , 1996, Radiographics : a review publication of the Radiological Society of North America, Inc.
[16] John A. Tesk,et al. Mechanical Properties of Ultra High Molecular Weight Polyethylene NIST Reference Material RM 8456 , 2001 .
[17] T. Brown,et al. Experimental and computational simulation of total hip arthroplasty dislocation. , 2001, The Orthopedic clinics of North America.
[18] L.-j. Yuan,et al. Dislocation after total hip arthroplasty , 1999, Archives of Orthopaedic and Trauma Surgery.
[19] Benjamin J Fregly,et al. Experimental evaluation of an elastic foundation model to predict contact pressures in knee replacements. , 2003, Journal of biomechanics.
[20] W. Harris,et al. Femoral head sizes larger than 32 mm against highly cross-linked polyethylene. , 2002, Clinical orthopaedics and related research.
[21] Philip C. Noble,et al. The Effect of Femoral Component Head Size on Posterior Dislocation of the Artificial Hip Joint* , 2000, The Journal of bone and joint surgery. American volume.
[22] B. Masri,et al. Treatment of hip instability. , 2001, The Orthopedic clinics of North America.