Circulating microvesicles correlate with radiation proctitis complication after radiotherapy

[1]  F. Milliat,et al.  Variation of 4 MV X-ray dose rate strongly impacts biological response both in vitro and in vivo , 2020, Scientific Reports.

[2]  M. Benderitter,et al.  The Medical Follow-up of the Radiological Accident: Épinal 2006. , 2019, Radiation research.

[3]  R. Vliegenthart,et al.  Early Detection of Cardiovascular Changes After Radiotherapy for Breast Cancer: Protocol for a European Multicenter Prospective Cohort Study (MEDIRAD EARLY HEART Study) , 2018, JMIR research protocols.

[4]  D. Brenner,et al.  Candidate protein markers for radiation biodosimetry in the hematopoietically humanized mouse model , 2018, Scientific Reports.

[5]  A. Rousseau,et al.  Absence of correlation between radiation-induced CD8 T-lymphocyte apoptosis and sequelae in patients with prostate cancer accidentally overexposed to radiation , 2018, Oncotarget.

[6]  J. Albanèse,et al.  A new assay to evaluate microvesicle plasmin generation capacity: validation in disease with fibrinolysis imbalance , 2018, Journal of extracellular vesicles.

[7]  A. Pfeifer,et al.  Endothelial- and Immune Cell-Derived Extracellular Vesicles in the Regulation of Cardiovascular Health and Disease , 2017, JACC. Basic to translational science.

[8]  Han Lin Shang,et al.  Methods for Scalar‐on‐Function Regression , 2017, International statistical review = Revue internationale de statistique.

[9]  T. K. Barik,et al.  Adiponectin: Its role in obesity-associated colon and prostate cancers. , 2017, Critical reviews in oncology/hematology.

[10]  X. Loyer,et al.  Extracellular vesicles in coronary artery disease , 2017, Nature Reviews Cardiology.

[11]  J. Grivel,et al.  Flow analysis of individual blood extracellular vesicles in acute coronary syndrome , 2017, Platelets.

[12]  S. Zhang,et al.  The use of and adherence to CTCAE v3.0 in cancer clinical trial publications , 2016, Oncotarget.

[13]  Lei Wang,et al.  Colostomy is a simple and effective procedure for severe chronic radiation proctitis. , 2016, World journal of gastroenterology.

[14]  A. Loundou,et al.  Platelet and not erythrocyte microparticles are procoagulant in transfused thalassaemia major patients , 2015, British journal of haematology.

[15]  N. Urban,et al.  Validation of LRG1 as a Potential Biomarker for Detection of Epithelial Ovarian Cancer by a Blinded Study , 2015, PloS one.

[16]  Pingping Li,et al.  Elevated circulating VE-cadherin+CD144+endothelial microparticles in ischemic cerebrovascular disease. , 2015, Thrombosis research.

[17]  H. Eguchi,et al.  Clinicopathological Significance of Leucine-Rich &agr;2-Glycoprotein-1 in Sera of Patients With Pancreatic Cancer , 2015, Pancreas.

[18]  C. Bode,et al.  Role of microparticles in endothelial dysfunction and arterial hypertension. , 2014, World journal of cardiology.

[19]  R. Vasan,et al.  Association of circulating endothelial microparticles with cardiometabolic risk factors in the Framingham Heart Study. , 2014, European heart journal.

[20]  F. Stewart,et al.  Stem cell therapies for the treatment of radiation-induced normal tissue side effects. , 2014, Antioxidants & redox signaling.

[21]  Cheng-Ta Yang,et al.  Research Article Circulating Endothelial-derived Activated Microparticle: a Useful Biomarker for Predicting One-year Mortality in Patients with Advanced Non-small Cell Lung Cancer , 2022 .

[22]  I. Pabinger,et al.  Microparticle-associated tissue factor activity in patients with metastatic pancreatic cancer and its effect on fibrin clot formation. , 2014, Translational research : the journal of laboratory and clinical medicine.

[23]  M. Coulange,et al.  Pelvic Radiation Disease Management by Hyperbaric Oxygen Therapy: Prospective Study of 44 Patients , 2014, Gastroenterology research and practice.

[24]  Romaric Lacroix,et al.  Plasmatic level of leukocyte-derived microparticles is associated with unstable plaque in asymptomatic patients with high-grade carotid stenosis. , 2013, Journal of the American College of Cardiology.

[25]  M. Bonneau,et al.  Repeated Autologous Bone Marrow‐Derived Mesenchymal Stem Cell Injections Improve Radiation‐Induced Proctitis in Pigs , 2013, Stem cells translational medicine.

[26]  M. McMichael,et al.  Microparticles in health and disease. , 2013, Journal of veterinary internal medicine.

[27]  M. Benderitter,et al.  Mesenchymal Stem Cell Therapy Stimulates Endogenous Host Progenitor Cells to Improve Colonic Epithelial Regeneration , 2013, PloS one.

[28]  C. Dubois,et al.  Revisited role of microparticles in arterial and venous thrombosis , 2013, Journal of thrombosis and haemostasis : JTH.

[29]  Graça Raposo,et al.  Extracellular vesicles: Exosomes, microvesicles, and friends , 2013, The Journal of cell biology.

[30]  E. Angles-cano,et al.  Leukocyte-and endothelial-derived microparticles : a circulating source for fibrinolysis by , 2012 .

[31]  T. Ohkawara,et al.  Serum leucine‐rich alpha‐2 glycoprotein is a disease activity biomarker in ulcerative colitis , 2012, Inflammatory bowel diseases.

[32]  G. Nickenig,et al.  Monocytic microparticles promote atherogenesis by modulating inflammatory cells in mice , 2012, Journal of cellular and molecular medicine.

[33]  B. Østerud Tissue factor/TFPI and blood cells. , 2012 .

[34]  Hans-Georg Müller,et al.  Functional Data Analysis , 2016 .

[35]  Zhen Zhang,et al.  Functional density synchronization , 2011, Comput. Stat. Data Anal..

[36]  N. Mackman,et al.  Microparticles in Hemostasis and Thrombosis , 2011, Circulation research.

[37]  M. Macey,et al.  Microparticle formation after exposure of blood to activated endothelium under flow , 2010, Cytometry. Part A : the journal of the International Society for Analytical Cytology.

[38]  G. Rogler,et al.  Circulating levels of chemerin and adiponectin are higher in ulcerative colitis and chemerin is elevated in Crohn's disease , 2010, Inflammatory bowel diseases.

[39]  H. Kijima,et al.  Transplantation of mesenchymal stem cells to prevent radiation-induced intestinal injury in mice. , 2010, Journal of radiation research.

[40]  Timothy D Cummins,et al.  Proteomic and functional characterisation of platelet microparticle size classes , 2009, Thrombosis and Haemostasis.

[41]  H. Ogawa,et al.  Significance of a multiple biomarkers strategy including endothelial dysfunction to improve risk stratification for cardiovascular events in patients at high risk for coronary heart disease. , 2009, Journal of the American College of Cardiology.

[42]  C. Bokemeyer,et al.  Tissue factor procoagulant activity of plasma microparticles is increased in patients with early-stage prostate cancer , 2009, Thrombosis and Haemostasis.

[43]  L. Arnaud,et al.  Standardization of platelet‐derived microparticle counting using calibrated beads and a Cytomics FC500 routine flow cytometer: a first step towards multicenter studies? , 2009, Journal of thrombosis and haemostasis : JTH.

[44]  B. Brenner,et al.  Monocyte-derived microparticles and exosomes induce procoagulant and apoptotic effects on endothelial cells , 2008, Thrombosis and Haemostasis.

[45]  A. Tedgui,et al.  Role of microparticles in atherothrombosis , 2008, Journal of internal medicine.

[46]  D. Dearnaley,et al.  Can biological markers act as non‐invasive, sensitive indicators of radiation‐induced effects in the gastrointestinal mucosa? , 2008, Alimentary pharmacology & therapeutics.

[47]  D. Peiffert,et al.  L'accident d'Épinal : passé, présent, avenir ☆ , 2007 .

[48]  D. Lenze,et al.  Effect of ionizing radiation on cellular procoagulability and co-ordinated gene alterations. , 2007, Haematologica.

[49]  F. Eschwège,et al.  [Epinal radiotherapy accident: passed, present, future]. , 2007, Cancer radiotherapie : journal de la Societe francaise de radiotherapie oncologique.

[50]  J. Freyssinet,et al.  Procoagulant Microparticles: Disrupting the Vascular Homeostasis Equation? , 2006, Arteriosclerosis, thrombosis, and vascular biology.

[51]  Joos V Lebesque,et al.  Acute and late gastrointestinal toxicity after radiotherapy in prostate cancer patients: consequential late damage. , 2006, International journal of radiation oncology, biology, physics.

[52]  V. Pawlowsky-Glahn,et al.  Groups of Parts and Their Balances in Compositional Data Analysis , 2005 .

[53]  José A López,et al.  Tissue-factor-bearing microvesicles arise from lipid rafts and fuse with activated platelets to initiate coagulation. , 2005, Blood.

[54]  D. Wagner,et al.  New links between inflammation and thrombosis. , 2005, Arteriosclerosis, thrombosis, and vascular biology.

[55]  B. Dahlbäck,et al.  The anticoagulant protein C pathway , 2005, FEBS letters.

[56]  Richard A. Preston,et al.  Effects of Severe Hypertension on Endothelial and Platelet Microparticles , 2003, Hypertension.

[57]  J. Freyssinet,et al.  Elevated levels of shed membrane microparticles with procoagulant potential in the peripheral circulating blood of patients with acute coronary syndromes. , 2000, Circulation.

[58]  J. Badimón,et al.  Blood-borne tissue factor: another view of thrombosis. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[59]  M. Sheaff,et al.  Effects of radiation on the normal prostate gland , 1997, Histopathology.