An operational approach with Pade approximant for the numerical solution of non-linear Fredholm integro-differential equations

Abstract In this paper we extend the operational Adomian–Tau method with Pade approximant for the numerical solution of non-linear Fredholm integro-differential equations. To this end, we will present our method based on two simple matrices. Then unknown solution of the considered equation will be determined by using computational aspects of these matrices. Also we will use Pade approximant to improve accuracy of the method. Finally we demonstrate the method by numerical examples.

[1]  M. H. Aliabadi,et al.  A matrix formulation of the Tau Method for Fredholm and Volterra linear integro-differential equations , 2002 .

[2]  M. I. Berenguer,et al.  A sequential approach for solving the Fredholm integro-differential equation , 2012 .

[3]  A Riahi,et al.  COMPARISON OF THE COSSERAT CONTINUUM APPROACH WITH FINITE ELEMENT INTERFACE MODELS IN A SIMULATION OF LAYERED MATERIALS , 2010 .

[4]  Khosrow Maleknejad,et al.  Convergence of approximate solution of nonlinear Fredholm–Hammerstein integral equations , 2010 .

[5]  Sedaghat Shahmorad,et al.  NUMERICAL PIECEWISE APPROXIMATE SOLUTION OF FREDHOLM INTEGRO-DIFFERENTIAL EQUATIONS BY THE TAU METHOD , 2005 .

[6]  G. A. Baker Essentials of Padé approximants , 1975 .

[7]  Hossein Jafari,et al.  Multistage Homotopy Analysis Method for Solving Nonlinear Integral Equations , 2010 .

[8]  Akbar Hashemi Borzabadi,et al.  A numerical scheme for a class of nonlinear Fredholm integral equations of the second kind , 2009, J. Comput. Appl. Math..

[9]  Hosseini Seyed Mohammad,et al.  Tau numerical solution of Fredholm integro-differential equations with arbitrary polynomial bases , 2003 .

[10]  Abdul-Majid Wazwaz,et al.  A new modification of the Adomian decomposition method for linear and nonlinear operators , 2001, Appl. Math. Comput..

[11]  S. H. Behiry,et al.  Discrete Adomian Decomposition solution of Nonlinear Fredholm Integral Equation , 2010 .

[12]  Eduardo L. Ortiz,et al.  An operational approach to the Tau method for the numerical solution of non-linear differential equations , 1981, Computing.

[13]  Saeid Abbasbandy,et al.  A new analytical technique to solve Fredholm’s integral equations , 2010, Numerical Algorithms.

[14]  S. Shahmorad,et al.  Numerical solution of the system of Fredholm integro-differential equations by the Tau method , 2005, Appl. Math. Comput..