Random Surfing Without Teleportation

In the standard Random Surfer Model, the teleportation matrix is necessary to ensure that the final PageRank vector is well-defined. The introduction of this matrix, however, results in serious problems and imposes fundamental limitations to the quality of the ranking vectors. In this work, building on the recently proposed NCDawareRank framework, we exploit the decomposition of the underlying space into blocks, and we derive easy to check necessary and sufficient conditions for random surfing without teleportation.

[1]  Pierre-Jacques Courtois,et al.  On time and space decomposition of complex structures , 1985, CACM.

[2]  John D. Garofalakis,et al.  Top-N recommendations in the presence of sparsity: An NCD-based approach , 2015, Web Intell..

[3]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[4]  Kevin S. McCurley,et al.  Ranking the web frontier , 2004, WWW '04.

[5]  Konstantin Avrachenkov,et al.  Distribution of PageRank Mass Among Principle Components of the Web , 2007, WAW.

[6]  Sebastiano Vigna,et al.  PageRank as a function of the damping factor , 2005, WWW '05.

[7]  Paolo Boldi TotalRank: ranking without damping , 2005, WWW '05.

[8]  Amy Nicole Langville,et al.  Google's PageRank and beyond - the science of search engine rankings , 2006 .

[9]  O. Perron Zur Theorie der Matrices , 1907 .

[10]  John D. Garofalakis,et al.  NCDREC: A Decomposability Inspired Framework for Top-N Recommendation , 2014, 2014 IEEE/WIC/ACM International Joint Conferences on Web Intelligence (WI) and Intelligent Agent Technologies (IAT).

[11]  Herbert A. Simon,et al.  The Sciences of the Artificial , 1970 .

[12]  David F. Gleich,et al.  Random Alpha PageRank , 2009, Internet Math..

[13]  Ricardo A. Baeza-Yates,et al.  Generic Damping Functions for Propagating Importance in Link-Based Ranking , 2006, Internet Math..

[14]  Sebastiano Vigna,et al.  PageRank: Functional dependencies , 2009, TOIS.

[15]  Herbert A. Simon,et al.  Aggregation of Variables in Dynamic Systems , 1961 .

[16]  John D. Garofalakis,et al.  NCDawareRank: a novel ranking method that exploits the decomposable structure of the web , 2013, WSDM.

[17]  Taher H. Haveliwala,et al.  The Condition Number of the PageRank Problem , 2003 .

[18]  E. Seneta Non-negative Matrices and Markov Chains (Springer Series in Statistics) , 1981 .

[19]  John D. Garofalakis,et al.  Hierarchical Itemspace Rank: Exploiting hierarchy to alleviate sparsity in ranking-based recommendation , 2015, Neurocomputing.

[20]  Andrew Trotman,et al.  Sound and complete relevance assessment for XML retrieval , 2008, TOIS.

[21]  E. Seneta Non-negative Matrices and Markov Chains , 2008 .

[22]  Rajeev Motwani,et al.  The PageRank Citation Ranking : Bringing Order to the Web , 1999, WWW 1999.