Laplacian Preconditioning of Elliptic PDEs: Localization of the Eigenvalues of the Discretized Operator

In the paper \textit{Preconditioning by inverting the {L}aplacian; an analysis of the eigenvalues. IMA Journal of Numerical Analysis 29, 1 (2009), 24--42}, Nielsen, Hackbusch and Tveito study the operator generated by using the inverse of the Laplacian as preconditioner for second order elliptic PDEs $\nabla \cdot (k(x) \nabla u) = f$. They prove that the range of $k(x)$ is contained in the spectrum of the preconditioned operator, provided that $k$ is continuous. Their rigorous analysis only addresses mappings defined on infinite dimensional spaces, but the numerical experiments in the paper suggest that a similar property holds in the discrete case. % Motivated by this investigation, we analyze the eigenvalues of the matrix $\bf{L}^{-1}\bf{A}$, where $\bf{L}$ and ${\bf{A}}$ are the stiffness matrices associated with the Laplace operator and general second order elliptic operators, respectively. Without any assumption about the continuity of $k(x)$, we prove the existence of a one-to-one pairing between the eigenvalues of $\bf{L}^{-1}\bf{A}$ and the intervals determined by the images under $k(x)$ of the supports of the FE nodal basis functions. As a consequence, we can show that the nodal values of $k(x)$ yield accurate approximations of the eigenvalues of $\bf{L}^{-1}\bf{A}$. Our theoretical results are illuminated by several numerical experiments.

[1]  A. Greenbaum Behavior of slightly perturbed Lanczos and conjugate-gradient recurrences , 1989 .

[2]  G. Meurant The Lanczos and conjugate gradient algorithms , 2008 .

[3]  O. Axelsson,et al.  On the rate of convergence of the preconditioned conjugate gradient method , 1986 .

[4]  C. Paige Accuracy and effectiveness of the Lanczos algorithm for the symmetric eigenproblem , 1980 .

[5]  Z. Strakos,et al.  Krylov Subspace Methods: Principles and Analysis , 2012 .

[6]  Bjørn Fredrik Nielsen,et al.  Analysis of the Minimal Residual Method Applied to Ill Posed Optimality Systems , 2013, SIAM J. Sci. Comput..

[7]  N. S. Mendelsohn,et al.  Coverings of Bipartite Graphs , 1958, Canadian Journal of Mathematics.

[8]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[9]  J. Daniel The Conjugate Gradient Method for Linear and Nonlinear Operator Equations , 1967 .

[10]  W. Hackbusch Iterative Solution of Large Sparse Systems of Equations , 1993 .

[11]  G. Meurant The Lanczos and Conjugate Gradient Algorithms: From Theory to Finite Precision Computations , 2006 .

[12]  Elwood S. Buffa,et al.  Graph Theory with Applications , 1977 .

[13]  Christopher C. Paige,et al.  The computation of eigenvalues and eigenvectors of very large sparse matrices , 1971 .

[14]  Anders Logg,et al.  Automated Solution of Differential Equations by the Finite Element Method: The FEniCS Book , 2012 .

[15]  Thomas A. Manteuffel,et al.  On the theory of equivalent operators and application to the numerical solution of uniformly elliptic partial differential equations , 1990 .

[16]  P. Hall On Representatives of Subsets , 1935 .

[17]  E. Stiefel,et al.  Refined Iterative Methods for Computation of the Solution and the Eigenvalues of Self-Adjoint Boundary Value Problems , 1959 .

[18]  D. A. Edwards The mathematical foundations of quantum mechanics , 1979, Synthese.

[19]  Ricardo H. Nochetto,et al.  Convergence of Adaptive Finite Element Methods , 2002, SIAM Rev..

[20]  Ralf Hiptmair,et al.  Operator Preconditioning , 2006, Comput. Math. Appl..

[21]  Anne Greenbaum,et al.  Predicting the Behavior of Finite Precision Lanczos and Conjugate Gradient Computations , 2015, SIAM J. Matrix Anal. Appl..

[22]  Barbara Kaltenbacher,et al.  Iterative Solution Methods , 2015, Handbook of Mathematical Methods in Imaging.

[23]  Ekkehard W. Sachs,et al.  Superlinear Convergence of Krylov Subspace Methods for Self-Adjoint Problems in Hilbert Space , 2015, SIAM J. Numer. Anal..

[24]  M. Hestenes,et al.  Methods of conjugate gradients for solving linear systems , 1952 .

[25]  A. Jennings,et al.  The solution of sparse linear equations by the conjugate gradient method , 1978 .

[26]  A. Jennings Influence of the Eigenvalue Spectrum on the Convergence Rate of the Conjugate Gradient Method , 1977 .

[27]  V. N. Bogaevski,et al.  Matrix Perturbation Theory , 1991 .

[28]  Aslak Tveito,et al.  Preconditioning by inverting the Laplacian: an analysis of the eigenvalues , 2008 .

[29]  Zdenek Strakos,et al.  Composite convergence bounds based on Chebyshev polynomials and finite precision conjugate gradient computations , 2014, Numerical Algorithms.

[30]  A. Greenbaum,et al.  Matrices That Generate the Same Krylov Residual Spaces , 2015 .

[31]  G. Meurant,et al.  The Lanczos and conjugate gradient algorithms in finite precision arithmetic , 2006, Acta Numerica.

[32]  C. Lanczos Solution of Systems of Linear Equations by Minimized Iterations1 , 1952 .

[33]  Kent-André Mardal,et al.  Preconditioning discretizations of systems of partial differential equations , 2011, Numer. Linear Algebra Appl..

[34]  Anne Greenbaum,et al.  Any Nonincreasing Convergence Curve is Possible for GMRES , 1996, SIAM J. Matrix Anal. Appl..

[35]  I︠u︡. V. Vorobʹev Method of moments in applied mathematics , 1965 .

[36]  H. V. D. Vorst,et al.  The rate of convergence of Conjugate Gradients , 1986 .

[37]  Zdenek Strakos,et al.  Preconditioning and the Conjugate Gradient Method in the Context of Solving PDEs , 2014, SIAM spotlights.

[38]  O. Axelsson,et al.  On the eigenvalue distribution of a class of preconditioning methods , 1986 .

[39]  Z. Strakos,et al.  On the real convergence rate of the conjugate gradient method , 1991 .