Convergence of the Restricted Nelder-Mead Algorithm in Two Dimensions

The Nelder-Mead algorithm, a longstanding direct search method for unconstrained optimization published in 1965, is designed to minimize a scalar-valued function f of n real variables using only function values, without any derivative information. Each Nelder-Mead iteration is associated with a nondegenerate simplex defined by n+1 vertices and their function values; a typical iteration produces a new simplex by replacing the worst vertex by a new point. Despite the method's widespread use, theoretical results have been limited: for strictly convex objective functions of one variable with bounded level sets, the algorithm always converges to the minimizer; for such functions of two variables, the diameter of the simplex converges to zero, but examples constructed by McKinnon show that the algorithm may converge to a nonminimizing point. This paper considers the restricted Nelder-Mead algorithm, a variant that does not allow expansion steps. In two dimensions we show that, for any nondegenerate starting simplex and any twice-continuously differentiable function with positive definite Hessian and bounded level sets, the algorithm always converges to the minimizer. The proof is based on treating the method as a discrete dynamical system, and relies on several techniques that are non-standard in convergence proofs for unconstrained optimization.

[1]  Felix Klein Elementary Mathematics from an Advanced Standpoint: Geometry , 1941 .

[2]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[3]  James M. Ortega,et al.  Iterative solution of nonlinear equations in several variables , 2014, Computer science and applied mathematics.

[4]  Daniel John Woods,et al.  An interactive approach for solving multi-objective optimization problems (interactive computer, nelder-mead simplex algorithm, graphics) , 1985 .

[5]  David K. Smith Theory of Linear and Integer Programming , 1987 .

[6]  Claude Brezinski,et al.  Numerical recipes in Fortran (The art of scientific computing) : W.H. Press, S.A. Teukolsky, W.T. Vetterling and B.P. Flannery, Cambridge Univ. Press, Cambridge, 2nd ed., 1992. 963 pp., US$49.95, ISBN 0-521-43064-X.☆ , 1993 .

[7]  A. R. Humphries,et al.  Dynamical Systems And Numerical Analysis , 1996 .

[8]  Margaret H. Wright,et al.  Direct search methods: Once scorned, now respectable , 1996 .

[9]  C. Perrin Numerical Recipes in Fortran 90: The Art of Scientific Computing, Second Edition, Volume 2 (3 CD-ROMs and Manual) By William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery. Cambridge University Press: New York, 1996. , 1997 .

[10]  Virginia Torczon,et al.  On the Convergence of Pattern Search Algorithms , 1997, SIAM J. Optim..

[11]  K. I. M. McKinnon,et al.  Convergence of the Nelder-Mead Simplex Method to a Nonstationary Point , 1998, SIAM J. Optim..

[12]  M. J. D. Powell,et al.  Direct search algorithms for optimization calculations , 1998, Acta Numerica.

[13]  Paul Tseng,et al.  Fortified-Descent Simplicial Search Method: A General Approach , 1999, SIAM J. Optim..

[14]  C. T. Kelley,et al.  Detection and Remediation of Stagnation in the Nelder--Mead Algorithm Using a Sufficient Decrease Condition , 1999, SIAM J. Optim..

[15]  Carl Tim Kelley,et al.  Iterative methods for optimization , 1999, Frontiers in applied mathematics.

[16]  Adam P. Gurson,et al.  Simplex Search Behavior in Nonlinear Optimization , 2000 .

[17]  V. Torczon,et al.  Direct search methods: then and now , 2000 .

[18]  C. J. Price,et al.  On the Convergence of Grid-Based Methods for Unconstrained Optimization , 2000, SIAM J. Optim..

[19]  Paul Tseng,et al.  Gilding the Lily: A Variant of the Nelder-Mead Algorithm Based on Golden-Section Search , 2002, Comput. Optim. Appl..

[20]  Charles Audet,et al.  Analysis of Generalized Pattern Searches , 2000, SIAM J. Optim..

[21]  I. D. Coope,et al.  A Convergent Variant of the Nelder–Mead Algorithm , 2002 .

[22]  Charles Audet,et al.  Convergence Results for Pattern Search Algorithms are Tight , 2002 .

[23]  Tamara G. Kolda,et al.  Optimization by Direct Search: New Perspectives on Some Classical and Modern Methods , 2003, SIAM Rev..

[24]  Charles Audet,et al.  Mesh Adaptive Direct Search Algorithms for Constrained Optimization , 2006, SIAM J. Optim..

[25]  A. Banerjee Convex Analysis and Optimization , 2006 .

[26]  Lixing Han,et al.  Effect of dimensionality on the Nelder–Mead simplex method , 2006, Optim. Methods Softw..

[27]  Katya Scheinberg,et al.  Introduction to derivative-free optimization , 2010, Math. Comput..