Operating system: Unix

We report on a program for the numerical evaluation of divergent multi-loop integrals. The program is based on iterated sector decomposition. We improve the original algorithm of Binoth and Heinrich such that the program is guaranteed to terminate. The program can be used to compute numerically the Laurent expansion of divergent multi-loop integrals regulated by dimensional regularisation. The symbolic and the numerical steps of the algorithm are combined into one program.

[1]  Allen S. Mandel Comment … , 1978, British heart journal.

[2]  Klaus Hepp,et al.  Proof of the Bogoliubov-Parasiuk theorem on renormalization , 1966 .

[3]  S. Encinas,et al.  Good points and constructive resolution of singluarities , 1998 .

[4]  Herwig Hauser,et al.  The Hironaka theorem on resolution of singularities (Or: A proof we always wanted to understand) , 2003 .

[5]  Edward Bierstone,et al.  Canonical desingularization in characteristic zero by blowing up the maximum strata of a local invariant , 1995 .

[6]  T. Binoth,et al.  Numerical evaluation of multi-loop integrals by sector decomposition , 2004 .

[7]  T. Binoth,et al.  Numerical evaluation of phase space integrals by sector decomposition , 2004 .

[8]  H. Hironaka Resolution of Singularities of an Algebraic Variety Over a Field of Characteristic Zero: II , 1964 .

[9]  S. Encinas,et al.  Strong resolution of singularities in characteristic zero , 2002 .

[10]  Richard Kreckel,et al.  Introduction to the GiNaC Framework for Symbolic Computation within the C++ Programming Language , 2000, J. Symb. Comput..

[11]  The massless two-loop two-point function , 2003, hep-ph/0308311.

[12]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[13]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[14]  Achilleas Lazopoulos,et al.  QCD corrections to triboson production , 2007 .

[15]  Orlando E. Villamayor,et al.  Constructiveness of Hironaka's resolution , 1989 .

[16]  On Motives Associated to Graph Polynomials , 2005, math/0510011.

[17]  S. Laporta,et al.  difference equations , 2001 .

[18]  J. B. Tausk Non-planar massless two-loop Feynman diagrams with four on-shell legs , 1999 .

[19]  C. Anastasiou,et al.  Numerical evaluation of loop integrals , 2005, hep-ph/0511176.

[20]  S. Laporta High-precision ϵ-expansions of three-loop master integrals contributing to the electron g–2 in QED , 2001, hep-ph/0111123.

[21]  A. Denner,et al.  High-Energy Approximation of One-Loop Feynman Integrals , 1996 .

[22]  Four-particle phase space integrals in massless QCD , 2003, hep-ph/0311276.

[23]  V. A. Smirnov Analytical result for dimensionally regularized massless on shell double box , 1999 .

[24]  T. Binoth,et al.  An automatized algorithm to compute infrared divergent multi-loop integrals , 2000 .

[25]  U Villamayor,et al.  Patching local uniformizations , 1992 .

[26]  S. Kawabata,et al.  A new version of the multi-dimensional integration and event generation package BASES/SPRING , 1995 .

[27]  S. Laporta High-precision ǫ-expansions of massive four-loop vacuum bubbles , 2002 .

[28]  Thomas Hahn,et al.  Cuba - a library for multidimensional numerical integration , 2004, Comput. Phys. Commun..

[29]  Charalampos Anastasiou,et al.  Evaluating multi-loop Feynman diagrams with infrared and threshold singularities numerically , 2007 .

[30]  Michal Czakon,et al.  Automatized analytic continuation of Mellin-Barnes integrals , 2005, Computer Physics Communications.

[31]  A. Bravo,et al.  A Strengthening of Resolution of Singularities in Characteristic Zero , 2003 .

[32]  G. Lepage A new algorithm for adaptive multidimensional integration , 1978 .