SCATTERING OF PULSAR RADIO EMISSION BY THE INTERSTELLAR PLASMA

We present simulations of scattering phenomena which are important in pulsar observations, but which are analytically intractable. The simulation code, which has also been used for solar wind and atmospheric scattering problems, is available from the authors. These simulations reveal an unexpectedly important role of dispersion in combination with refraction. We demonstrate the effect of analyzing observations which are shorter than the refractive scale. We examine time-of-arrival fluctuations in detail: showing their correlation with intensity and dispersion measure, providing a heuristic model from which one can estimate their contribution to pulsar timing observations, and showing that much of the effect can be corrected making use of measured intensity and dispersion. Finally, we analyze observations of the millisecond pulsar J0437–4715, made with the Parkes radio telescope, that show timing fluctuations which are correlated with intensity. We demonstrate that these timing fluctuations can be corrected, but we find that they are much larger than would be expected from scattering in a homogeneous turbulent plasma with isotropic density fluctuations. We do not have an explanation for these timing fluctuations.

[1]  V. I. Shishov,et al.  Laser Beam Scintillation Beyond a Turbulent Layer , 1971 .

[2]  A. Hewish Frequency-time structure of pulsar scintillation , 1980 .

[3]  J. Lestrade,et al.  Simulation of the interstellar scintillation and the extreme scattering events of pulsars , 2007, astro-ph/0703641.

[4]  J. Codona,et al.  Refractive Scintillation in the Interstellar Medium , 1987 .

[5]  D. Staelin,et al.  OBSERVATIONS OF PULSAR SPECTRA. , 1970 .

[6]  B. Rickett,et al.  Interstellar Scintillation of Pulsar B0809+74 , 1999, astro-ph/9911368.

[7]  J. Weatherall,et al.  Nanosecond radio bursts from strong plasma turbulence in the Crab pulsar , 2003, Nature.

[8]  J. P. Filice,et al.  Dynamic spectra of interplanetary scintillations , 1984, Nature.

[9]  I. Cognard,et al.  Interstellar Plasma Weather Effects in Long-Term Multifrequency Timing of Pulsar B1937+21 , 2006, astro-ph/0601242.

[10]  S. Burke-Spolaor,et al.  Timing stability of millisecond pulsars and prospects for gravitational-wave detection , 2009, 0908.0244.

[11]  R. Frehlich,et al.  Simulation of wave propagation in three-dimensional random media. , 1995, Applied optics.

[12]  J. Codona,et al.  Two-frequency intensity cross-spectrum , 1986 .

[13]  J. Roberts,et al.  Dynamic spectra of pulsar scintillations at frequencies near 0.34, 0.41, 0.63, 1.4, 1.7, 3.2 and 5.0 GHz , 1982 .

[14]  Alex S. Hill,et al.  Deflection of Pulsar Signal Reveals Compact Structures in the Galaxy , 2004, astro-ph/0411752.

[15]  K. Johnston,et al.  Extreme scattering events caused by compact structures in the interstellar medium , 1987, Nature.

[16]  Adam Deller,et al.  100 μas RESOLUTION VLBI IMAGING OF ANISOTROPIC INTERSTELLAR SCATTERING TOWARD PULSAR B0834+06 , 2009, 0910.5654.

[17]  C. Counselman,et al.  Radio Pulse Shapes, Flux Densities, and Dispersion of Pulsar NP 0532 , 1970 .

[18]  M. A. McLaughlin,et al.  Faint scattering around pulsars: probing the interstellar medium on solar system size scales , 2001 .

[19]  I. Cognard,et al.  An extreme scattering event in the direction of the millisecond pulsar 1937 + 21 , 1993, Nature.

[20]  J. Reynolds,et al.  The inner scale of the plasma turbulence towards PSR J1644−4559 , 2009 .

[21]  Ramesh Narayan,et al.  The physics of pulsar scintillation , 1992, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[22]  N. Bhat,et al.  Dispersion measure variations and their effect on precision pulsar timing , 2007, astro-ph/0702366.

[23]  J. Cordes,et al.  Diffractive Interstellar Scintillation Timescales and Velocities , 1998 .

[24]  R. Blandford,et al.  Low-frequency variability of pulsars. , 1985 .

[25]  S. Kulkarni,et al.  Precision Timing of PSR J0437–4715: An Accurate Pulsar Distance, a High Pulsar Mass, and a Limit on the Variation of Newton’s Gravitational Constant , 2008, 0801.2589.

[26]  A. Lyne,et al.  Refractive interstellar scintillation in pulsar dynamic spectra , 1994 .

[27]  J. Cordes Space velocities of radio pulsars from interstellar scintillations , 1986 .

[28]  N. Bhat,et al.  Long-Term Scintillation Studies of Pulsars. I. Observations and Basic Results , 1998, astro-ph/9810354.

[29]  J. Cordes,et al.  Interstellar propagation effects and the precision of pulsar timing , 1990 .

[30]  D. Stinebring,et al.  Timing and scintillations of the millisecond pulsar 1937 + 214 , 1990 .

[31]  James M. Cordes,et al.  Theory of Parabolic Arcs in Interstellar Scintillation Spectra , 2004 .

[32]  B. J. Rickett,et al.  Radio propagation through the turbulent interstellar plasma. , 1990 .

[33]  A. Hewish,et al.  Quasi-periodic scintillation patterns of the pulsars PSR 1133+16 and PSR 1642−03 , 1985 .

[34]  B. Rickett Frequency Structure of Pulsar Intensity Variations , 1969, Nature.

[35]  F. V. Bunkin,et al.  Laser irradiance propagation in turbulent media , 1975, Proceedings of the IEEE.

[36]  G. Bourgois,et al.  Solar cycle changes in the level of compressive microturbulence near the Sun , 1995 .

[37]  R. Narayan,et al.  Fitting Formula for Flux Scintillation of Compact Radio Sources , 2005, astro-ph/0509192.

[38]  M. Davis,et al.  Fundamental Astrometry and Millisecond Pulsars , 1988 .