Visual input to the mouse lateral posterior and posterior thalamic nuclei: photoreceptive origins and retinotopic order

The lateral posterior and posterior thalamic nuclei have been implicated in aspects of visually guided behaviour and reflex responses to light, including those dependent on melanopsin photoreception. Here we investigated the extent and basic properties of visually evoked activity across the mouse lateral posterior and posterior thalamus. We show that a subset of retinal projections to these regions derive from melanopsin‐expressing retinal ganglion cells and find many cells that exhibit melanopsin‐dependent changes in firing. We also show that subsets of cells across these regions integrate signals from both eyes in various ways and that, within the lateral posterior thalamus, visual responses are retinotopically ordered.

[1]  Annette E. Allen,et al.  Melanopsin-Based Brightness Discrimination in Mice and Humans , 2012, Current Biology.

[2]  Glen T. Prusky,et al.  Melanopsin-Expressing Retinal Ganglion-Cell Photoreceptors: Cellular Diversity and Role in Pattern Vision , 2010, Neuron.

[3]  Reiko Meguro,et al.  The Extrageniculate Visual Pathway Generates Distinct Response Properties in the Higher Visual Areas of Mice , 2014, Current Biology.

[4]  D. Berson,et al.  Phototransduction by Retinal Ganglion Cells That Set the Circadian Clock , 2002, Science.

[5]  Roberto Spreafico,et al.  Multisensory convergence and interaction in the pulvinar-lateralis posterior complex of the cat's thalamus , 1980, Neuroscience Letters.

[6]  N. Mrosovsky,et al.  Impaired Masking Responses to Light in Melanopsin‐Knockout Mice , 2003, Chronobiology International.

[7]  L M Chalupa,et al.  Visual receptive fields in the striate-recipient zone of the lateral posterior-pulvinar complex , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[8]  H. Piggins,et al.  Multiple hypothalamic cell populations encoding distinct visual information , 2011, The Journal of physiology.

[9]  Quan Le Van Neurophysiological study for pulvinar role in rapid detection of snakes in monkeys , 2014 .

[10]  Jac Billington,et al.  Neural processing of imminent collision in humans , 2011, Proceedings of the Royal Society B: Biological Sciences.

[11]  R. Lucas,et al.  A Distinct Contribution of Short-Wavelength-Sensitive Cones to Light-Evoked Activity in the Mouse Pretectal Olivary Nucleus , 2011, The Journal of Neuroscience.

[12]  T. Brown,et al.  Binocular Integration in the Mouse Lateral Geniculate Nuclei , 2014, Current Biology.

[13]  V. Casagrande,et al.  Retinotopic maps in the pulvinar of bush baby (otolemur garnettii) , 2013, The Journal of comparative neurology.

[14]  Clifford B. Saper,et al.  A neural mechanism for exacerbation of headache by light , 2010, Nature Neuroscience.

[15]  G. H. Jacobs,et al.  Contributions of the mouse UV photopigment to the ERG and to vision , 2007, Documenta Ophthalmologica.

[16]  Rebecca A. Mease,et al.  Convergence of Cortical and Sensory Driver Inputs on Single Thalamocortical Cells , 2013, Cerebral cortex.

[17]  Satchidananda Panda,et al.  Melanopsin Contributions to Irradiance Coding in the Thalamo-Cortical Visual System , 2010, PLoS biology.

[18]  R. Mize,et al.  Superior colliculus neurons which project to the cat lateral posterior nucleus have varying morphologies , 1981, The Journal of comparative neurology.

[19]  G. DeAngelis,et al.  Spatiotemporal receptive field organization in the lateral geniculate nucleus of cats and kittens. , 1997, Journal of neurophysiology.

[20]  Lotfi B. Merabet,et al.  Motion integration in a thalamic visual nucleus , 1998, Nature.

[21]  Franck P. Martial,et al.  Colour As a Signal for Entraining the Mammalian Circadian Clock , 2015, PLoS biology.

[22]  V. Hommes,et al.  The Melanopic Sensitivity Function Accounts for Melanopsin-Driven Responses in Mice under Diverse Lighting Conditions , 2013, PloS one.

[23]  C. Niell,et al.  What can mice tell us about how vision works? , 2011, Trends in Neurosciences.

[24]  Samer Hattar,et al.  Central projections of melanopsin‐expressing retinal ganglion cells in the mouse , 2006, The Journal of comparative neurology.

[25]  Rainer Goebel,et al.  Subcortical Connections to Human Amygdala and Changes following Destruction of the Visual Cortex , 2012, Current Biology.

[26]  David A Leopold,et al.  Primary visual cortex: awareness and blindsight. , 2012, Annual review of neuroscience.

[27]  Xintian Hu,et al.  Processing of visually evoked innate fear by a non-canonical thalamic pathway , 2015, Nature Communications.

[28]  P. Dean,et al.  Grating detection and visual acuity after lesions of striate cortex in hooded rats , 2004, Experimental Brain Research.

[29]  I. Thompson,et al.  Quantitative characterization of visual response properties in the mouse dorsal lateral geniculate nucleus. , 2003, Journal of neurophysiology.

[30]  J. Hurley,et al.  Scotopic and Photopic Visual Thresholds and Spatial and Temporal Discrimination Evaluated by Behavior of Mice in a Water Maze† , 2006, Photochemistry and photobiology.

[31]  C. Casanova,et al.  Retinal projections to the lateral posterior-pulvinar complex in intact and early visual cortex lesioned cats , 2004, Experimental Brain Research.

[32]  Matthew S. Grubb,et al.  Abnormal Functional Organization in the Dorsal Lateral Geniculate Nucleus of Mice Lacking the β2 Subunit of the Nicotinic Acetylcholine Receptor , 2003, Neuron.

[33]  Christian Casanova,et al.  Overlapping visual response latency distributions in visual cortices and LP-pulvinar complex of the cat , 2006, Experimental Brain Research.

[34]  R D Freeman,et al.  Monocular and binocular response properties of cells in the striate-recipient zone of the cat's lateral posterior-pulvinar complex. , 1989, Journal of neurophysiology.

[35]  H. Nogami,et al.  Regional expression of a gene encoding a neuron-specific Na(+)-dependent inorganic phosphate cotransporter (DNPI) in the rat forebrain. , 2000, Brain research. Molecular brain research.

[36]  C. Casanova,et al.  Spatiotemporal profiles of receptive fields of neurons in the lateral posterior nucleus of the cat LP-pulvinar complex. , 2015, Journal of neurophysiology.

[37]  Jamie L. Reed,et al.  Superior colliculus connections with visual thalamus in gray squirrels (Sciurus carolinensis): Evidence for four subdivisions within the pulvinar complex , 2011, The Journal of comparative neurology.

[38]  B. V. Updyke,et al.  Retinotopic organization within the lateral posterior complex of the cat , 1989, The Journal of comparative neurology.

[39]  L. P. Morin,et al.  Retinofugal projections in the mouse , 2014, The Journal of comparative neurology.

[40]  K. Grieve,et al.  The primate pulvinar nuclei: vision and action , 2000, Trends in Neurosciences.

[41]  D. Copenhagen,et al.  Light Evokes Melanopsin-Dependent Vocalization and Neural Activation Associated with Aversive Experience in Neonatal Mice , 2012, PloS one.

[42]  D G Pelli,et al.  The VideoToolbox software for visual psychophysics: transforming numbers into movies. , 1997, Spatial vision.

[43]  P. Delagrange,et al.  Intrinsic and extrinsic cues regulate the daily profile of mouse lateral habenula neuronal activity , 2014, The Journal of physiology.

[44]  Gerald H. Jacobs,et al.  Genetically engineered mice with an additional class of cone photoreceptors: Implications for the evolution of color vision , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[45]  S. Petersen,et al.  Pulvinar nuclei of the behaving rhesus monkey: visual responses and their modulation. , 1985, Journal of neurophysiology.

[46]  R. Douglas,et al.  Characterization of mouse cortical spatial vision , 2004, Vision Research.

[47]  Russell N Van Gelder,et al.  Melanopsin-dependent light avoidance in neonatal mice , 2010, Proceedings of the National Academy of Sciences.

[48]  Jianhua Cang,et al.  Sublinear Binocular Integration Preserves Orientation Selectivity in Mouse Visual Cortex , 2013, Nature Communications.

[49]  D. Paul,et al.  Visual responses in the lateral geniculate evoked by Cx36-independent rod pathways , 2011, Vision Research.

[50]  Jumpei Matsumoto,et al.  Pulvinar neurons reveal neurobiological evidence of past selection for rapid detection of snakes , 2013, Proceedings of the National Academy of Sciences.

[51]  Samuel D. Gale,et al.  Distinct Representation and Distribution of Visual Information by Specific Cell Types in Mouse Superficial Superior Colliculus , 2014, The Journal of Neuroscience.

[52]  K. Donner,et al.  In search of the visual pigment template , 2000, Visual Neuroscience.

[53]  R. Dolan,et al.  A subcortical pathway to the right amygdala mediating "unseen" fear. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[54]  R. C. Rentería,et al.  Receptive field center size decreases and firing properties mature in ON and OFF retinal ganglion cells after eye opening in the mouse. , 2011, Journal of neurophysiology.

[55]  M. Meulders,et al.  Visual receptive fields of neurons in pulvinar, nucleus lateralis posterior and nucleus suprageniculatus thalami of the cat. , 1969, Brain research.

[56]  G. E. Pickard,et al.  Melanopsin retinal ganglion cells receive bipolar and amacrine cell synapses , 2003, The Journal of comparative neurology.

[57]  M. Bickford,et al.  Neuroanatomy Original Research Article , 2022 .

[58]  Kwoon Y. Wong,et al.  Synaptic influences on rat ganglion‐cell photoreceptors , 2007, The Journal of physiology.

[59]  R. Peeters,et al.  Visual presentation of phobic stimuli: Amygdala activation via an extrageniculostriate pathway? , 2007, Psychiatry Research: Neuroimaging.

[60]  Riccardo Storchi,et al.  Spatial receptive fields in the retina and dorsal lateral geniculate nucleus of mice lacking rods and cones. , 2015, Journal of neurophysiology.

[61]  Robert H. Wurtz,et al.  Thalamic pathways for active vision , 2011, Trends in Cognitive Sciences.

[62]  R. Mooney,et al.  Anatomical and functional organization of pathway from superior colliculus to lateral posterior nucleus in hamster. , 1984, Journal of neurophysiology.

[63]  David S. Greenberg,et al.  Rats maintain an overhead binocular field at the expense of constant fusion , 2013, Nature.

[64]  T. V. Sewards,et al.  Separate, parallel sensory and hedonic pathways in the mammalian somatosensory system , 2002, Brain Research Bulletin.

[65]  Andrew D Huberman,et al.  Diverse Visual Features Encoded in Mouse Lateral Geniculate Nucleus , 2013, The Journal of Neuroscience.

[66]  S. Molotchnikoff,et al.  Influence of the superior colliculus on visual responses of cells in the rabbit's lateral posterior nucleus , 2004, Experimental Brain Research.

[67]  Jon H. Kaas,et al.  Pulvinar contributions to the dorsal and ventral streams of visual processing in primates , 2007, Brain Research Reviews.

[68]  R. Freeman,et al.  Spatiotemporal flow of information in the early visual pathway , 2014, The European journal of neuroscience.

[69]  J Miller,et al.  Visual responses of single neurons in the caudal lateral pulvinar of the macaque monkey , 1981, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[70]  George Paxinos,et al.  The Mouse Brain in Stereotaxic Coordinates , 2001 .

[71]  D. Hicks Second sight? Ecker JL, Dumitrescu ON, Wong KY, Alam NM, Chen SK, LeGates T, Renna JM, Prusky GT, Berson DM, Hattar S (2010) Melanopsin-expressing retinal ganglion-cell photoreceptors: cellular diversity and role in pattern vision. Neuron 67:49–60 , 2011, Graefe's Archive for Clinical and Experimental Ophthalmology.

[72]  D H Brainard,et al.  The Psychophysics Toolbox. , 1997, Spatial vision.

[73]  P. Kofuji,et al.  Differential Cone Pathway Influence on Intrinsically Photosensitive Retinal Ganglion Cell Subtypes , 2010, The Journal of Neuroscience.

[74]  Kaori Ikeda,et al.  Sublinear integration underlies binocular processing in primary visual cortex , 2013, Nature Neuroscience.

[75]  S C Rapisardi,et al.  Visual and somatosensory receptive fields of neurons in the squirrel monkey pulvinar. , 1973, Brain research.

[76]  E. Callaway,et al.  Parallel processing strategies of the primate visual system , 2009, Nature Reviews Neuroscience.

[77]  Franck P. Martial,et al.  Melanopsin-Driven Light Adaptation in Mouse Vision , 2014, Current Biology.

[78]  M. Meister,et al.  Rapid Innate Defensive Responses of Mice to Looming Visual Stimuli , 2013, Current Biology.