Molecular proxies as indicators of freshwater incursion-driven salinity stratification

[1]  R. Hocking,et al.  Devonian Reef Complexes of the Canning Basin, Western Australia: A Historical Review , 2017 .

[2]  A. Schimmelmann,et al.  Changes of palaeoenvironmental conditions recorded in Late Devonian reef systems from the Canning Basin, Western Australia: A biomarker and stable isotope approach , 2015 .

[3]  K. Grice,et al.  Exceptional preservation of Palaeozoic steroids in a diagenetic continuum , 2013, Scientific Reports.

[4]  K. Grice,et al.  Elevated pCO2 leading to Late Triassic extinction, persistent photic zone euxinia, and rising sea levels , 2013 .

[5]  K. Grice,et al.  A pyrolysis and stable isotopic approach to investigate the origin of methyltrimethyltridecylchromans (MTTCs) , 2013 .

[6]  S. Bhattacharya,et al.  Biomarker signatures from Neoproterozoic–Early Cambrian oil, western India , 2013 .

[7]  K. Grice,et al.  Biomarkers reveal the role of photic zone euxinia in exceptional fossil preservation: An organic geochemical perspective , 2013 .

[8]  Zhiguang Song,et al.  Paleosalinity significance of occurrence and distribution of methyltrimethyltridecyl chromans in the Upper Cretaceous Nenjiang Formation, Songliao Basin, China , 2011 .

[9]  L. Marynowski,et al.  Anoxic Annulata Events in the Late Famennian of the Holy Cross Mountains (Southern Poland): Geochemical and palaeontological record , 2010 .

[10]  T. Algeo,et al.  Land plant evolution and weathering rate changes in the Devonian , 2010 .

[11]  J. Long,et al.  The Late Devonian Gogo Formation Lägerstatte of Western Australia: Exceptional Early Vertebrate Preservation and Diversity , 2010 .

[12]  T. Kikuchi,et al.  Probable fungal origin of perylene in Late Cretaceous to Paleogene terrestrial sedimentary rocks of northeastern Japan as indicated from stable carbon isotopes , 2010 .

[13]  S. Driese,et al.  ENVIRONMENTAL AND ECOLOGICAL VARIABILITY OF MIDDLE DEVONIAN (GIVETIAN) FORESTS IN APPALACHIAN BASIN PALEOSOLS, NEW YORK, UNITED STATES , 2010 .

[14]  Anne‐Laure Decombeix,et al.  The land plant cover in the Devonian: a reassessment of the evolution of the tree habit , 2010 .

[15]  M. Asif,et al.  New insights into the origin of perylene in geological samples , 2009 .

[16]  J. Bao,et al.  The relationship between methylated chromans and maturity of organic matter in the source rocks from Jianghan hypersaline basin , 2009 .

[17]  M. Joachimski,et al.  Devonian climate and reef evolution: Insights from oxygen isotopes in apatite , 2009 .

[18]  W. R. Kelly,et al.  Revised delta34S reference values for IAEA sulfur isotope reference materials S-2 and S-3. , 2009, Rapid communications in mass spectrometry : RCM.

[19]  L. Kump,et al.  Oceanic Euxinia in Earth History: Causes and Consequences , 2008 .

[20]  R. Amann,et al.  Microbial ecology of the stratified water column of the Black Sea as revealed by a comprehensive biomarker study , 2007 .

[21]  S. Guoying,et al.  Stable Carbon Isotopic Compositions of Methylated‐MTTC in Crude Oils from Saline Lacustrine Depositional Environment: Source Implications , 2007 .

[22]  G. Skrzypek,et al.  Assessment of carbonate-phosphoric acid analytical technique performed using GasBench II in continuous flow isotope ratio mass spectrometry , 2007 .

[23]  L. Marynowski,et al.  Water column euxinia and wildfire evidence during deposition of the Upper Famennian Hangenberg event horizon from the Holy Cross Mountains (central Poland) , 2007, Geological Magazine.

[24]  Steven Z. Kassakian,et al.  Oxic, suboxic, and anoxic conditions in the Black Sea , 2007 .

[25]  G. Skrzypek,et al.  Delta13C analyses of calcium carbonate: Comparison between the GasBench and elemental analyzer techniques. , 2006, Rapid communications in mass spectrometry : RCM.

[26]  Kliti Grice,et al.  Photic Zone Euxinia During the Permian-Triassic Superanoxic Event , 2005, Science.

[27]  L. Schwark,et al.  Chemostratigraphy of the Posidonia Black Shale, SW Germany: I. Influence of sea-level variation on organic facies evolution , 2004 .

[28]  B. Jørgensen,et al.  Pyritization processes and greigite formation in the advancing sulfidization front in the upper Pleistocene sediments of the Black Sea , 2004 .

[29]  H. Strauss,et al.  The sulfur isotopic evolution of Phanerozoic seawater based on the analysis of structurally substituted sulfate in carbonates , 2004 .

[30]  C. Ostertag-Henning,et al.  Water column anoxia, enhanced productivity and concomitant changes in δ13C and δ34S across the Frasnian–Famennian boundary (Kowala — Holy Cross Mountains/Poland) , 2001 .

[31]  Thomas J. Algeo,et al.  12. Effects of the Middle to Late Devonian Spread of Vascular Land Plants on Weathering Regimes, Marine Biotas, and Global Climate , 2001 .

[32]  R. Kagi,et al.  Origin of perylene in ancient sediments and its geological significance , 2000 .

[33]  M. Böttcher,et al.  Biogeochemistry of sulfur in a sediment core from the west-central Baltic Sea: Evidence from stable isotopes and pyrite textures , 2000 .

[34]  L. Schwark,et al.  Geochemical characterization of Malm Zeta laminated carbonates from the Franconian Alb, SW-Germany (II) , 1998 .

[35]  K. Grice,et al.  Molecular isotopic characterisation of hydrocarbon biomarkers in Palaeocene-Eocene evaporitic, lacustrine source rocks from the Jianghan Basin, China , 1998 .

[36]  M. Lewan,et al.  Artificial maturation of an immature sulfur- and organic matter-rich limestone from the Ghareb Formation, Jordan , 1998 .

[37]  K. Grice,et al.  Isotopically heavy carbon in the C21 to C25 regular isoprenoids in halite-rich deposits from the Sdom Formation, Dead Sea Basin, Israel , 1998 .

[38]  K. Grice,et al.  A remarkable paradox: Sulfurised freshwater algal (Botryococcus braunii) lipids in an ancient hypersaline euxinic ecosystem , 1998 .

[39]  K. Grice,et al.  Biosynthetic effects on the stable carbon isotopic compositions of algal lipids: implications for deciphering the carbon isotopic biomarker record , 1998 .

[40]  Stefan Schouten,et al.  A molecular and carbon isotope biogeochemical study of biomarkers and kerogen pyrolysates of the Kimmeridge Clay Facies: palaeoenvironmental implications , 1997 .

[41]  A. O. Barakat,et al.  A Comparative Study of Molecular Paleosalinity Indicators: Chromans, Tocopherols and C20 Isoprenoid Thiophenes in Miocene Lake Sediments (Nördlinger Ries, Southern Germany) , 1997 .

[42]  K. Grice,et al.  Molecular indicators of palaeoenvironmental conditions in an immature Permian shale (Kupferschiefer, Lower Rhine Basin, north-west Germany) from free and S-bound lipids , 1996 .

[43]  M. Lewan,et al.  Impact of dia- and catagenesis on sulphur and oxygen sequestration of biomarkers as revealed by artificial maturation of an immature sedimentary rock , 1996 .

[44]  Stefan Schouten,et al.  Restricted utility of aryl isoprenoids as indicators of photic zone anoxia , 1996 .

[45]  J. Grimalt,et al.  PAH Distributions in Sediments from High Mountain Lakes , 1996 .

[46]  S. Larter,et al.  Reply to comments by Sinninghe Damsté and De Leeuw (1995) on Li et al. (1995), Organic Geochemistry 23, 159–167 , 1995 .

[47]  J. Hayes,et al.  Evidence for gammacerane as an indicator of water column stratification. , 1995, Geochimica et cosmochimica acta.

[48]  D. Jones,et al.  Biomarkers or not biomarkers? A new hypothesis for the origin of pristane involving derivation from methyltrimethyltridecylchromans (MTTCs) formed during diagenesis from chlorophyll and alkylphenols , 1995 .

[49]  J. Hayes,et al.  A molecular and carbon isotopic study towards the origin and diagenetic fate of diaromatic carotenoids. , 1994, Organic geochemistry.

[50]  J. Damsté,et al.  Variations in abundances and distributions of isoprenoid chromans and long-chain alkylbenzenes in sediments of the Mulhouse Basin: a molecular sedimentary record of palaeosalinity☆ , 1993 .

[51]  K. Peters,et al.  The Biomarker Guide: Interpreting Molecular Fossils in Petroleum and Ancient Sediments , 1992 .

[52]  I. Kaplan,et al.  Diterpanes, triterpanes, steranes and aromatic hydrocarbons in natural bitumens and pyrolysates from different mimic coals , 1992 .

[53]  G. Playford,et al.  Canadian and Australian Devonian spores: zonation and correlation , 1992 .

[54]  H. Harvey,et al.  Marine ciliates as a widespread source of tetrahymanol and hopan-3β-ol in sediments , 1991 .

[55]  C. Scotese,et al.  Revised World maps and introduction , 1990, Geological Society, London, Memoirs.

[56]  L. Schwark,et al.  Aromatic hydrocarbon composition of the Permian Kupferschiefer in the Lower Rhine Basin, NW Germany , 1990 .

[57]  S. Rowland,et al.  The widespread occurrence of highly branched acyclic C20, C25 and C30 hydrocarbons in recent sediments and biota—A review , 1990 .

[58]  J. Hayes,et al.  Compound-specific isotopic analyses: a novel tool for reconstruction of ancient biogeochemical processes. , 1990, Organic geochemistry.

[59]  J. Rullkötter,et al.  Tetrahymanol, the most likely precursor of gammacerane, occurs ubiquitously in marine sediments , 1989 .

[60]  B. Jørgensen,et al.  Measurement of bacterial sulfate reduction in sediments: Evaluation of a single-step chromium reduction method , 1989 .

[61]  R. Berner,et al.  Organic carbon losses during burial and thermal maturation of normal marine shales , 1987 .

[62]  S. Brassell,et al.  The identification of mono-, di- and trimethyl 2-methyl-2-(4,8,12-trimethyltridecyl) chromans and their occurrence in the geosphere , 1987 .

[63]  R. Summons,et al.  Chlorobiaceae in Palaeozoic seas revealed by biological markers, isotopes and geology , 1986, Nature.

[64]  J. G. Johnson,et al.  Devonian eustatic fluctuations in Euramerica , 1985 .

[65]  S. Brassell,et al.  Tocopherols as likely precursors of pristane in ancient sediments and crude oils , 1984, Nature.

[66]  W. Küspert Environmental Changes During Oil Shale Deposition as Deduced from Stable Isotope Ratios , 1982 .

[67]  W. Giger,et al.  Poly cyclic aromatic hydrocarbons in Recent lake sediments—II. Compounds derived from biogenic precursors during early diagenesis , 1980 .

[68]  R. Reusch,et al.  5-n-Alkylresorcinols from encysting Azotobacter vinelandii: isolation and characterization , 1979, Journal of bacteriology.

[69]  W. Giger,et al.  Perylene in sediments from the Namibian Shelf , 1979 .

[70]  B. Simoneit,et al.  Organic geochemical indicators of palaeoenvironmental conditions of sedimentation , 1978 .

[71]  Ronald A. Hites,et al.  The global distribution of polycyclic aromatic hydrocarbons in recent sediments , 1978 .

[72]  Z. Aizenshtat Perylene and its geochemical significance , 1973 .

[73]  J. Smith,et al.  Isoprenoid Hydrocarbons in Coal and Petroleum , 1969, Nature.

[74]  W. L. Orr,et al.  Perylene in basin sediments off southern california , 1967 .

[75]  M. Blumer Pigments of a Fossil Echinoderm , 1960, Nature.