2D Atomic Crystals: A Promising Solution for Next‐Generation Data Storage

With the rapid development of the information age, more and more new technologies such as big data and cloud computing are beginning to emerge. As a result, the demand for high data‐storage density is becoming more and more urgent. In the past 10 years, data‐storage density has been greatly improved by reducing the size of memory cells. However, as semiconductor technology nodes have shrunk, a number of problems have appeared in metal–oxide–semiconductor field‐effect transistor (MOSFET)‐based memory cells, such as gate‐induced drain leakage, drain‐induced barrier lowering, and reliability issues. Fortunately, due to their atomic thickness, high mobility, and sustainable miniaturization properties, 2D atomic crystals (2D materials) are considered the most promising substitute for silicon to solve those issues. This review investigates the use of 2D materials in nonvolatile and volatile memories, including MOSFET‐based memory, magnetic random‐access memory, resistive random‐access memory, dynamic random‐access memory, semi‐floating‐gate memory, and other novel memories.

[1]  S. Roche,et al.  Nonvolatile Memories Based on Graphene and Related 2D Materials , 2019, Advanced materials.

[2]  Wei D. Lu,et al.  Ionic modulation and ionic coupling effects in MoS2 devices for neuromorphic computing , 2018, Nature Materials.

[3]  Nagarajan Raghavan,et al.  Recommended Methods to Study Resistive Switching Devices , 2018, Advanced Electronic Materials.

[4]  Eric Pop,et al.  Electronic synapses made of layered two-dimensional materials , 2018, Nature Electronics.

[5]  Gunuk Wang,et al.  Synaptic Barristor Based on Phase‐Engineered 2D Heterostructures , 2018, Advanced materials.

[6]  H.-S. Philip Wong,et al.  In-memory computing with resistive switching devices , 2018, Nature Electronics.

[7]  Chunsen Liu,et al.  A semi-floating gate memory based on van der Waals heterostructures for quasi-non-volatile applications , 2018, Nature Nanotechnology.

[8]  M. Hersam,et al.  Multi-terminal memtransistors from polycrystalline monolayer molybdenum disulfide , 2018, Nature.

[9]  Xiaodong Xu,et al.  Giant tunneling magnetoresistance in spin-filter van der Waals heterostructures , 2018, Science.

[10]  Jack C. Lee,et al.  Atomristor: Nonvolatile Resistance Switching in Atomic Sheets of Transition Metal Dichalcogenides. , 2018, Nano letters.

[11]  J. Yang,et al.  Robust memristors based on layered two-dimensional materials , 2018, 1801.00530.

[12]  P. Ajayan,et al.  Quaternary 2D Transition Metal Dichalcogenides (TMDs) with Tunable Bandgap , 2017, Advanced materials.

[13]  P. Kim,et al.  Low-Temperature Ohmic Contact to Monolayer MoS2 by van der Waals Bonded Co/h-BN Electrodes. , 2017, Nano letters.

[14]  B. Sumpter,et al.  Triphasic 2D Materials by Vertically Stacking Laterally Heterostructured 2H‐/1T′‐MoS2 on Graphene for Enhanced Photoresponse , 2017 .

[15]  W. Lu,et al.  Recent Progress on Localized Field Enhanced Two-dimensional Material Photodetectors from Ultraviolet-Visible to Infrared. , 2017, Small.

[16]  F. Banhart,et al.  Creating the Smallest BN Nanotube from Bilayer h‐BN , 2017 .

[17]  Jun Zhang,et al.  Layer‐Number Dependent Optical Properties of 2D Materials and Their Application for Thickness Determination , 2017 .

[18]  David-Wei Zhang,et al.  Eliminating Overerase Behavior by Designing Energy Band in High-Speed Charge-Trap Memory Based on WSe2. , 2017, Small.

[19]  Limin Tong,et al.  2D Materials for Optical Modulation: Challenges and Opportunities , 2017, Advanced materials.

[20]  R. Waser,et al.  Coexistence of Grain‐Boundaries‐Assisted Bipolar and Threshold Resistive Switching in Multilayer Hexagonal Boron Nitride , 2017 .

[21]  Tai-De Li,et al.  Van der Waals Force Isolation of Monolayer MoS2 , 2016, Advanced materials.

[22]  Ja Hoon Koo,et al.  Colloidal Synthesis of Uniform‐Sized Molybdenum Disulfide Nanosheets for Wafer‐Scale Flexible Nonvolatile Memory , 2016, Advanced materials.

[23]  Zhiyong Fan,et al.  High Mobility MoS2 Transistor with Low Schottky Barrier Contact by Using Atomic Thick h‐BN as a Tunneling Layer , 2016, Advanced materials.

[24]  P. Ajayan,et al.  Thermally Assisted Nonvolatile Memory in Monolayer MoS2 Transistors. , 2016, Nano letters.

[25]  M. W. Iqbal,et al.  Room temperature spin valve effect in the NiFe/Gr–hBN/Co magnetic tunnel junction , 2016 .

[26]  Seongjun Park,et al.  Two-terminal floating-gate memory with van der Waals heterostructures for ultrahigh on/off ratio , 2016, Nature Communications.

[27]  S. Koester,et al.  Dynamic Memory Cells Using MoS2 Field-Effect Transistors Demonstrating Femtoampere Leakage Currents. , 2016, ACS nano.

[28]  H. Ju,et al.  Nonvolatile Charge Injection Memory Based on Black Phosphorous 2D Nanosheets for Charge Trapping and Active Channel Layers , 2016 .

[29]  K. Novoselov,et al.  2D materials and van der Waals heterostructures , 2016, Science.

[30]  X. Duan,et al.  Van der Waals heterostructures and devices , 2016 .

[31]  X. Dai,et al.  Spontaneous Formation of a Superconductor–Topological Insulator–Normal Metal Layered Heterostructure , 2016, Advanced materials.

[32]  Dong Uk Lee,et al.  Toward negligible charge loss in charge injection memories based on vertically integrated 2D heterostructures , 2016, Nano Research.

[33]  Huanli Dong,et al.  2D Mica Crystal as Electret in Organic Field‐Effect Transistors for Multistate Memory , 2016, Advanced materials.

[34]  Sung Woo Chung,et al.  Exploiting Refresh Effect of DRAM Read Operations: A Practical Approach to Low-Power Refresh , 2016, IEEE Transactions on Computers.

[35]  James Hone,et al.  Ultrafast optical switching of infrared plasmon polaritons in high-mobility graphene , 2016, Nature Photonics.

[36]  A. Fert,et al.  Magnetic tunnel junctions with monolayer hexagonal boron nitride tunnel barriers , 2016 .

[37]  F. Wen,et al.  Liquid‐Exfoliated Black Phosphorous Nanosheet Thin Films for Flexible Resistive Random Access Memory Applications , 2016 .

[38]  M. W. Iqbal,et al.  Room temperature spin valve effect in NiFe/WS2/Co junctions , 2016, Scientific Reports.

[39]  K. Sun,et al.  Memristive Behavior and Ideal Memristor of 1T Phase MoS2 Nanosheets. , 2016, Nano letters.

[40]  S. Vishvakarma,et al.  Improved Short-Channel Characteristics With Long Data Retention Time in Extreme Short-Channel Flash Memory Devices , 2016, IEEE Transactions on Electron Devices.

[41]  Xiangfan Xu,et al.  Nonvolatile Floating‐Gate Memories Based on Stacked Black Phosphorus–Boron Nitride–MoS2 Heterostructures , 2015 .

[42]  Kaiyou Wang,et al.  Charge trap memory based on few-layer black phosphorus. , 2015, Nanoscale.

[43]  Avik W. Ghosh,et al.  Quantum transport at the Dirac point: Mapping out the minimum conductivity from pristine to disordered graphene , 2015, 1507.01257.

[44]  Lei Wang,et al.  Multi-terminal transport measurements of MoS2 using a van der Waals heterostructure device platform. , 2015, Nature nanotechnology.

[45]  J. Warner,et al.  All Chemical Vapor Deposition Growth of MoS2:h-BN Vertical van der Waals Heterostructures. , 2015, ACS nano.

[46]  L. Lauhon,et al.  Gate-tunable memristive phenomena mediated by grain boundaries in single-layer MoS2. , 2015, Nature nanotechnology.

[47]  H-S Philip Wong,et al.  Memory leads the way to better computing. , 2015, Nature nanotechnology.

[48]  A. Bessonov,et al.  Layered memristive and memcapacitive switches for printable electronics. , 2015, Nature materials.

[49]  A. Neto,et al.  Air-stable transport in graphene-contacted, fully encapsulated ultrathin black phosphorus-based field-effect transistors. , 2014, ACS nano.

[50]  Gautam Gupta,et al.  Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. , 2014, Nature materials.

[51]  André Dankert,et al.  Tunnel magnetoresistance with atomically thin two-dimensional hexagonal boron nitride barriers , 2014, Nano Research.

[52]  P. Ye,et al.  Device perspective for black phosphorus field-effect transistors: contact resistance, ambipolar behavior, and scaling. , 2014, ACS nano.

[53]  C. Zhang,et al.  Tunable charge-trap memory based on few-layer MoS2. , 2014, ACS nano.

[54]  M. Kamalakar,et al.  Enhanced Tunnel Spin Injection into Graphene using Chemical Vapor Deposited Hexagonal Boron Nitride , 2014, Scientific Reports.

[55]  P. Lugli,et al.  Feasibility Study of ${\rm SrRuO}_{3}/{\rm SrTiO}_{3}/{\rm SrRuO}_{3}$ Thin Film Capacitors in DRAM Applications , 2014, IEEE Transactions on Electron Devices.

[56]  Xiaogan Liang,et al.  Multibit data storage states formed in plasma-treated MoS₂ transistors. , 2014, ACS nano.

[57]  G. Steele,et al.  Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors. , 2014, Nano letters.

[58]  Likai Li,et al.  Black phosphorus field-effect transistors. , 2014, Nature nanotechnology.

[59]  Xu Cui,et al.  Flexible and transparent MoS2 field-effect transistors on hexagonal boron nitride-graphene heterostructures. , 2013, ACS nano.

[60]  José F. Martínez,et al.  Understanding and mitigating refresh overheads in high-density DDR4 DRAM systems , 2013, ISCA.

[61]  Lain‐Jong Li,et al.  Large-area synthesis of highly crystalline WSe(2) monolayers and device applications. , 2013, ACS nano.

[62]  M. W. Iqbal,et al.  Spin valve effect of NiFe/graphene/NiFe junctions , 2013, Nano Research.

[63]  A. Kis,et al.  Nonvolatile memory cells based on MoS2/graphene heterostructures. , 2013, ACS nano.

[64]  P. Ajayan,et al.  Statistical study of deep submicron dual-gated field-effect transistors on monolayer chemical vapor deposition molybdenum disulfide films. , 2013, Nano letters.

[65]  Mohamad Towfik Krounbi,et al.  Basic principles of STT-MRAM cell operation in memory arrays , 2013 .

[66]  L. Chu,et al.  Evolution of electronic structure in atomically thin sheets of WS2 and WSe2. , 2012, ACS nano.

[67]  Qing Hua Wang,et al.  Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. , 2012, Nature nanotechnology.

[68]  T. Mikolajick,et al.  Reliability of $\hbox{SrRuO}_{3}\hbox{/SrTiO}_{3}\hbox{/SrRuO}_{3}$ Stacks for DRAM Applications , 2012, IEEE Electron Device Letters.

[69]  Chris H. Kim,et al.  A 2T1C Embedded DRAM Macro With No Boosted Supplies Featuring a 7T SRAM Based Repair and a Cell Storage Monitor , 2012, IEEE Journal of Solid-State Circuits.

[70]  A. Morpurgo,et al.  Quantitative determination of the band gap of WS2 with ambipolar ionic liquid-gated transistors. , 2012, Nano letters.

[71]  Ting‐Chang Chang,et al.  Origin of self-heating effect induced asymmetrical degradation behavior in InGaZnO thin-film transistors , 2012 .

[72]  Shimeng Yu,et al.  Metal–Oxide RRAM , 2012, Proceedings of the IEEE.

[73]  N. Peres,et al.  Electron tunneling through ultrathin boron nitride crystalline barriers. , 2012, Nano letters.

[74]  Minoru Osada,et al.  Two‐Dimensional Dielectric Nanosheets: Novel Nanoelectronics From Nanocrystal Building Blocks , 2012, Advanced materials.

[75]  N. Peres,et al.  Field-Effect Tunneling Transistor Based on Vertical Graphene Heterostructures , 2011, Science.

[76]  G. Giovannetti,et al.  Ni(111)|graphene|h-BN junctions as ideal spin injectors , 2011, 1110.5291.

[77]  Jing Guo,et al.  Performance Limits of Monolayer Transition Metal Dichalcogenide Transistors , 2011, IEEE Transactions on Electron Devices.

[78]  A. Radenović,et al.  Single-layer MoS2 transistors. , 2011, Nature nanotechnology.

[79]  J. Moodera,et al.  Tunneling path toward spintronics , 2011 .

[80]  S. Ganguly,et al.  Bulk Planar Junctionless Transistor (BPJLT): An Attractive Device Alternative for Scaling , 2011, IEEE Electron Device Letters.

[81]  Yen-Ting Chen,et al.  Ultrathin HfON Trapping Layer for Charge-Trap Memory Made by Atomic Layer Deposition , 2010, IEEE Electron Device Letters.

[82]  K. Shepard,et al.  Boron nitride substrates for high-quality graphene electronics. , 2010, Nature nanotechnology.

[83]  A. Splendiani,et al.  Emerging photoluminescence in monolayer MoS2. , 2010, Nano letters.

[84]  Myoung Jin Lee,et al.  A Mechanism for Dependence of Refresh Time on Data Pattern in DRAM , 2010, IEEE Electron Device Letters.

[85]  A. Pasquarello,et al.  Magnetoresistive junctions based on epitaxial graphene and hexagonal boron nitride , 2009, 0907.3952.

[86]  Rajkumar Buyya,et al.  Article in Press Future Generation Computer Systems ( ) – Future Generation Computer Systems Cloud Computing and Emerging It Platforms: Vision, Hype, and Reality for Delivering Computing as the 5th Utility , 2022 .

[87]  Zhichao Lu,et al.  Physical Insights on BJT-Based 1T DRAM Cells , 2009, IEEE Electron Device Letters.

[88]  Roger Wood,et al.  Future hard disk drive systems , 2009 .

[89]  Martina Müller,et al.  Magnetoresistance in double spin filter tunnel junctions with nonmagnetic electrodes and its unconventional bias dependence. , 2009, Physical review letters.

[90]  Kwang Soo Kim,et al.  Prediction of very large values of magnetoresistance in a graphene nanoribbon device. , 2008, Nature nanotechnology.

[91]  M. Wuttig,et al.  Phase-change materials for rewriteable data storage. , 2007, Nature materials.

[92]  A. Fert,et al.  The emergence of spin electronics in data storage. , 2007, Nature materials.

[93]  S. Louie,et al.  Half-metallic graphene nanoribbons , 2006, Nature.

[94]  T. Tanaka,et al.  A capacitorless 1T-DRAM technology using gate-induced drain-leakage (GIDL) current for low-power and high-speed embedded memory , 2006, IEEE Transactions on Electron Devices.

[95]  Donggun Park,et al.  Characteristics of the full CMOS SRAM cell using body-tied TG MOSFETs (bulk FinFETs) , 2006, IEEE Transactions on Electron Devices.

[96]  Y. Taur,et al.  The influence of source and drain junction depth on the short-channel effect in MOSFETs , 2005, IEEE Transactions on Electron Devices.

[97]  M. Lankhorst,et al.  Low-cost and nanoscale non-volatile memory concept for future silicon chips , 2005, Nature materials.

[98]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[99]  S. Iijima,et al.  Direct evidence for atomic defects in graphene layers , 2004, Nature.

[100]  T. Terano,et al.  Narrow distribution of threshold Voltage in 4-Mbit MONOS memory-cell array with F-N channel write and direct/F-N tunneling erase operation as a single transistor structure , 2004, IEEE Transactions on Electron Devices.

[101]  R. W. Dave,et al.  Origin of temperature dependence in tunneling magnetoresistance , 2003 .

[102]  Yuan Taur,et al.  Design considerations for CMOS near the limits of scaling , 2002 .

[103]  Y. Naveh,et al.  Shrinking limits of silicon MOSFETs: numerical study of 10 nm scale devices , 1999, cond-mat/9910258.

[104]  J. Slaughter,et al.  Progress and outlook for MRAM technology , 1999, IEEE International Magnetics Conference.

[105]  V. K. De,et al.  Short channel models and scaling limits of SOI and bulk MOSFETs , 1994, IEEE J. Solid State Circuits.

[106]  E. Seevinck,et al.  Static-noise margin analysis of MOS SRAM cells , 1987 .

[107]  M. Julliere Tunneling between ferromagnetic films , 1975 .

[108]  Simon M. Sze,et al.  A floating gate and its application to memory devices , 1967 .

[109]  Lei Liao,et al.  Floating gate memory-based monolayer MoS2 transistor with metal nanocrystals embedded in the gate dielectrics. , 2015, Small.

[110]  M. W. Iqbal,et al.  Interlayer dependent polarity of magnetoresistance in graphene spin valves , 2015 .

[111]  Xindong Wu,et al.  Data mining with big data , 2014, IEEE Transactions on Knowledge and Data Engineering.

[112]  J Joshua Yang,et al.  Memristive devices for computing. , 2013, Nature nanotechnology.

[113]  A. Geim,et al.  Atomically thin boron nitride : a tunnelling barrier for graphene devices , 2012 .