Quantum speed limit from a quantum-state-diffusion method

Characterizing the most efficient evolution, the quantum speed limit (QSL) plays a significant role in quantum technology. How to generalize the well-established QSL from closed systems to open systems has attracted much attention. In contrast to the previous schemes to derive the QSL from the reduced dynamics of open system, we propose a QSL bound from the point of view of the total system consisting of the open system and its environment using a quantum-state-diffusion method. The application of our scheme to a two-level system reveals that the system possesses an infinite speedup capacity in the noiseless case, which is destroyed by the environment under the Born-Markovian approximation. It is interesting to find that the capacity in the noiseless case is recovered in the non-Markovian dynamics as long as a bound state is formed in the energy spectrum of the total system. Enriching the characterization schemes of the QSL, our result provides an efficient way to control the QSL of open systems.

[1]  T. Busch,et al.  Quantum control and quantum speed limits in supersymmetric potentials , 2022, New Journal of Physics.

[2]  Shijie Xie,et al.  Geometric quantum speed limits for Markovian dynamics in open quantum systems , 2022, New Journal of Physics.

[3]  S. Nakajima,et al.  Speed limits of the trace distance for open quantum system , 2022, New Journal of Physics.

[4]  Sebastian Deffner,et al.  From quantum speed limits to energy-efficient quantum gates , 2022, New Journal of Physics.

[5]  Niklas Hörnedal,et al.  Extensions of the Mandelstam–Tamm quantum speed limit to systems in mixed states , 2021, New Journal of Physics.

[6]  Subhashis Banerjee,et al.  Non-uniform magnetic field as a booster for quantum speed limit: faster quantum information processing , 2021, New Journal of Physics.

[7]  A. Pati,et al.  Quantum speed limits for information and coherence , 2021, New Journal of Physics.

[8]  M. Belmonte Potentials , 2021, Quantum Mechanics.

[9]  Wéi Wú,et al.  Non-Markovian Quantum Thermometry , 2021, Physical Review Applied.

[10]  D. Schneble,et al.  Formation of matter-wave polaritons in an optical lattice , 2021, Nature Physics.

[11]  Yujun Zheng,et al.  Quantum Speed Limit Quantified by the Changing Rate of Phase. , 2021, Physical review letters.

[12]  S. Nicholson,et al.  Unifying Quantum and Classical Speed Limits on Observables , 2021, Physical Review X.

[13]  Jing Liu,et al.  Bhatia-Davis formula in the quantum speed limit , 2021, Physical Review A.

[14]  W. Alt,et al.  Observing crossover between quantum speed limits , 2021, Science advances.

[15]  Paulina Marian,et al.  Quantum speed of evolution in a Markovian bosonic environment , 2021, 2107.01075.

[16]  Giacomo Guarnieri,et al.  Action quantum speed limits , 2020, 2011.05232.

[17]  A. del Campo Probing Quantum Speed Limits with Ultracold Gases. , 2020, Physical review letters.

[18]  D. Z. Rossatto,et al.  Quantum coherence and speed limit in the mean-field Dicke model of superradiance , 2020, 2007.02872.

[19]  Wéi Wú,et al.  Non-Markovian sensing of a quantum reservoir , 2020, Physical Review A.

[20]  Guo‐Feng Zhang,et al.  Quantum speedup in noninertial frames , 2020, The European Physical Journal C.

[21]  Yujun Zheng,et al.  Quantum speed limit via the trajectory ensemble , 2020 .

[22]  Chang-shui Yu,et al.  Resource speed limits: maximal rate of resource variation , 2020, New Journal of Physics.

[23]  Bo Liu,et al.  Operational definition of quantum speed limit , 2020, 2002.10822.

[24]  Luis Pedro García-Pintos,et al.  Time–information uncertainty relations in thermodynamics , 2020, Nature Physics.

[25]  Yujun Zheng,et al.  Distinct Bound of the Quantum Speed Limit via the Gauge Invariant Distance. , 2019, Physical review letters.

[26]  Sebastian Deffner,et al.  Orthogonality Catastrophe as a Consequence of the Quantum Speed Limit. , 2019, Physical review letters.

[27]  S. Maniscalco,et al.  There is no general connection between the quantum speed limit and non-Markovianity , 2019, New Journal of Physics.

[28]  Guo‐Feng Zhang,et al.  Quantum dynamical speedup in correlated noisy channels , 2019, Physical Review A.

[29]  G. Paraoanu,et al.  Superadiabatic population transfer in a three-level superconducting circuit , 2019, Science Advances.

[30]  A. Dechant,et al.  Stochastic Time Evolution, Information Geometry, and the Cramér-Rao Bound , 2018, Physical Review X.

[31]  Q. Wang,et al.  Excited-state quantum phase transition and the quantum-speed-limit time , 2018, Physical Review A.

[32]  K. Funo,et al.  Speed limit for open quantum systems , 2018, New Journal of Physics.

[33]  Wéi Wú Stochastic decoupling approach to the spin-boson dynamics: Perturbative and nonperturbative treatments , 2018, Physical Review A.

[34]  Bassano Vacchini,et al.  System-environment correlations and Markovian embedding of quantum non-Markovian dynamics , 2018, Physical Review A.

[35]  Yun-An Yan,et al.  Equivalence of stochastic formulations and master equations for open systems , 2018 .

[36]  Heng Fan,et al.  Hierarchical-environment-assisted non-Markovian speedup dynamics control , 2018, Physical Review A.

[37]  Masayuki Ohzeki,et al.  Comment on ‘Energy-time uncertainty relation for driven quantum systems’ , 2018, Journal of Physics A: Mathematical and Theoretical.

[38]  D. Schneble,et al.  Spontaneous emission of matter waves from a tunable open quantum system , 2017, Nature.

[39]  C. Viviescas,et al.  Parametrization and Optimization of Gaussian Non-Markovian Unravelings for Open Quantum Dynamics. , 2017, Physical review letters.

[40]  N. Margolus,et al.  Quantum Speed Limits across the Quantum-to-Classical Transition. , 2017, Physical review letters.

[41]  Marco G. Genoni,et al.  Precision thermometry and the quantum speed limit , 2017, Quantum Science and Technology.

[42]  Kavan Modi,et al.  Tightening Quantum Speed Limits for Almost All States. , 2017, Physical review letters.

[43]  Wei Wu,et al.  Realization of hierarchical equations of motion from stochastic perspectives , 2017, Physical Review A.

[44]  W. Strunz,et al.  Stochastic Feshbach Projection for the Dynamics of Open Quantum Systems. , 2017, Physical review letters.

[45]  Sebastian Deffner,et al.  Quantum speed limits: from Heisenberg’s uncertainty principle to optimal quantum control , 2017, 1705.08023.

[46]  Sebastian Deffner Geometric quantum speed limits: a case for Wigner phase space , 2017, 1704.03357.

[47]  Kavan Modi,et al.  Enhancing the Charging Power of Quantum Batteries. , 2016, Physical review letters.

[48]  A. Houck,et al.  Quantum electrodynamics near a photonic bandgap , 2016, Nature Physics.

[49]  W. L. Yang,et al.  Mechanism for quantum speedup in open quantum systems , 2016, 1602.07980.

[50]  B. Shao,et al.  Quantum speed limit and a signal of quantum criticality , 2016, Scientific Reports.

[51]  I. Bloch,et al.  Optimal control of complex atomic quantum systems , 2015, Scientific Reports.

[52]  Zhenyu Xu Detecting quantum speedup in closed and open systems , 2015, 1510.00101.

[53]  Alan C. Santos,et al.  Superadiabatic Controlled Evolutions and Universal Quantum Computation , 2015, Scientific Reports.

[54]  Gerardo Adesso,et al.  Generalized Geometric Quantum Speed Limits , 2015, 1507.05848.

[55]  Sk Sazim,et al.  Quantum coherence sets the quantum speed limit for mixed states , 2015, 1506.03199.

[56]  Daniel A. Lidar,et al.  Quantum Speed Limits for Leakage and Decoherence. , 2015, Physical review letters.

[57]  Sebastian Deffner,et al.  Environment-Assisted Speed-up of the Field Evolution in Cavity Quantum Electrodynamics. , 2015, Physical review letters.

[58]  Jing Liu,et al.  Quantum speed limits in open systems: Non-Markovian dynamics without rotating-wave approximation , 2015, Scientific Reports.

[59]  C. Lam,et al.  Higher-order solutions to non-Markovian quantum dynamics via a hierarchical functional derivative , 2015, Physical Review A.

[60]  Zhen-Yu Xu,et al.  Quantum-speed-limit time for multiqubit open systems , 2014, 1410.8239.

[61]  H. Fan,et al.  Classical-driving-assisted quantum speed-up , 2014, 1410.7106.

[62]  J. P. Home,et al.  Quantum harmonic oscillator state synthesis by reservoir engineering , 2014, Science.

[63]  Masoud Mohseni,et al.  Quantum brachistochrone curves as geodesics: obtaining accurate minimum-time protocols for the control of quantum systems. , 2014, Physical review letters.

[64]  Lian-Ao Wu,et al.  Perturbation methods for the non-Markovian quantum state diffusion equation , 2014, 1407.4178.

[65]  Shi-Biao Zheng Open-system geometric phase based on system-reservoir joint state evolution , 2014, 1405.1227.

[66]  W. Strunz,et al.  Hierarchy of stochastic pure states for open quantum system dynamics. , 2014, Physical review letters.

[67]  Wei Han,et al.  Quantum speed limit for arbitrary initial states , 2013, Scientific Reports.

[68]  Hong-Gang Luo,et al.  Canonical versus noncanonical equilibration dynamics of open quantum systems. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[69]  Shunlong Luo,et al.  Quantum speedup in a memory environment , 2013, 1311.1593.

[70]  G. C. Hegerfeldt,et al.  Driving at the quantum speed limit: optimal control of a two-level system. , 2013, Physical review letters.

[71]  M. Paternostro,et al.  More bang for your buck: Super-adiabatic quantum engines , 2013, Scientific Reports.

[72]  E. Lutz,et al.  Quantum speed limit for non-Markovian dynamics. , 2013, Physical review letters.

[73]  M B Plenio,et al.  Quantum speed limits in open system dynamics. , 2012, Physical review letters.

[74]  M. M. Taddei,et al.  Quantum speed limit for physical processes. , 2012, Physical review letters.

[75]  Hong-Gang Luo,et al.  Anomalous decoherence in a dissipative two-level system , 2012, 1208.4295.

[76]  N. Moiseyev,et al.  Time-dependent Hamiltonians with 100% evolution speed efficiency , 2012, 1207.5373.

[77]  F. Frowis Kind of entanglement that speeds up quantum evolution , 2012, 1204.1212.

[78]  W. Strunz,et al.  System–environment correlations and non-Markovian dynamics , 2012, 1202.4280.

[79]  Jeremy M Moix,et al.  Accuracy of second order perturbation theory in the polaron and variational polaron frames. , 2012, The Journal of chemical physics.

[80]  Lian-Ao Wu,et al.  Feshbach projection operator partitioning for quantum open systems: Stochastic approach , 2011, 1112.0661.

[81]  Riccardo Mannella,et al.  High-fidelity quantum driving , 2011, Nature Physics.

[82]  J. Shao,et al.  Derivation of exact master equation with stochastic description: dissipative harmonic oscillator. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[83]  Hong-Gang Luo,et al.  Quantum phase transition in the delocalized regime of the spin-boson model , 2011, 1106.4173.

[84]  S. Lloyd,et al.  Advances in quantum metrology , 2011, 1102.2318.

[85]  Ting Yu,et al.  Non-Markovian relaxation of a three-level system: quantum trajectory approach. , 2010, Physical review letters.

[86]  Jun-Hong An,et al.  Mechanism of entanglement preservation , 2009, 0910.5622.

[87]  T. Toffoli,et al.  Fundamental limit on the rate of quantum dynamics: the unified bound is tight. , 2009, Physical review letters.

[88]  D. Porras,et al.  Mesoscopic spin-boson models of trapped ions , 2007, 0710.5145.

[89]  Zhiguo Lu,et al.  Quantum dynamics of the dissipative two-state system coupled with a sub-Ohmic bath , 2006, quant-ph/0612042.

[90]  C. Bender,et al.  Faster than Hermitian quantum mechanics. , 2006, Physical review letters.

[91]  X. Yi,et al.  Geometric phase in dephasing systems , 2005, quant-ph/0501085.

[92]  T. Yu,et al.  Convolutionless Non-Markovian master equations and quantum trajectories: Brownian motion , 2003, quant-ph/0312103.

[93]  R. Xu,et al.  Theory of open quantum systems , 2002 .

[94]  H. Grabert,et al.  Non-Markovian quantum state diffusion , 2001 .

[95]  C. Monroe,et al.  Decoherence of quantum superpositions through coupling to engineered reservoirs , 2000, Nature.

[96]  S. Lloyd Ultimate physical limits to computation , 1999, Nature.

[97]  N. Gisin,et al.  Non-Markovian quantum state diffusion: Perturbation approach , 1999, quant-ph/9902043.

[98]  N. Gisin,et al.  Open system dynamics with non-markovian quantum trajectories , 1998, quant-ph/9803079.

[99]  N. Gisin,et al.  Non-Markovian quantum state diffusion , 1998, quant-ph/9803062.

[100]  N. Margolus,et al.  The maximum speed of dynamical evolution , 1997, quant-ph/9710043.

[101]  Lev Vaidman,et al.  Minimum time for the evolution to an orthogonal quantum state , 1992 .

[102]  Aharonov,et al.  Geometry of quantum evolution. , 1990, Physical review letters.

[103]  Page,et al.  Geometrical description of Berry's phase. , 1987, Physical review. A, General physics.

[104]  Wood,et al.  New form of the time-energy uncertainty relation. , 1985, Physical review. A, General physics.

[105]  I. Tamm,et al.  The Uncertainty Relation Between Energy and Time in Non-relativistic Quantum Mechanics , 1991 .

[106]  A. Leggett,et al.  Dynamics of the dissipative two-state system , 1987 .