Variational Sum of Monotone Operators

The sum of (nonlinear) maximal monotone operators is reconsidered from the Yosida approximation and graph-convergence point of view. This leads to a new concept, called variational sum, which coincides with the classical (pointwise) sum when the classical sum happens to be maximal monotone. In the case of subdifferentials of convex lower semicontinuous proper functions, the variational sum is equal to the subdifferential of the sum of the functions. A general feature of the variational sum is to involve not only the values of the two operators at the given point but also their values at nearby points.

[1]  Tosio Kato Perturbation theory for linear operators , 1966 .

[2]  U. Mosco Convergence of convex sets and of solutions of variational inequalities , 1969 .

[3]  Haim Brezis,et al.  Perturbations of nonlinear maximal monotone sets in banach space , 1970 .

[4]  Barry Simon,et al.  Quantum Mechanics for Hamiltonians Defined as Quadratic Forms , 1971 .

[5]  H. Brezis Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert , 1973 .

[6]  R. Tyrrell Rockafellar Conjugate Duality and Optimization , 1974 .

[7]  P. Chernoff Product formulas, nonlinear semigroups, and addition of unbounded operators , 1974 .

[8]  Felix E. Browder,et al.  Nonlinear Operators and Nonlinear Equations of Evolution , 1976 .

[9]  Hedy Attouch,et al.  Familles d'opérateurs maximaux monotones et mesurabilité , 1979 .

[10]  S. Reich Convergence and approximation of nonlinear semigroups , 1980 .

[11]  F. Kubo Conditional expectations and operations derived from network connections , 1981 .

[12]  A. Haraux Nonlinear evolution equations: Global behavior of solutions , 1981 .

[13]  H. Attouch Variational convergence for functions and operators , 1984 .

[14]  J. Aubin,et al.  Applied Nonlinear Analysis , 1984 .

[15]  T. Zolezzi On stability analysis in mathematical programming , 1984 .

[16]  M. Tsukada Convergence of best approximations in a smooth Banach space , 1984 .

[17]  R. Rockafellar,et al.  Maximal monotone relations and the second derivatives of nonsmooth functions , 1985 .

[18]  Gregory B. Passty The parallel sum of nonlinear monotone operators , 1986 .

[19]  Nikolaos S. Papageorgiou,et al.  Convergence in approximation and nonsmooth analysis , 1987 .

[20]  B. Lemaire Coupling optimization methods and variational convergence , 1988 .

[21]  Roger J.-B. Wets,et al.  Convergence of convex-concave saddle functions: applications to convex programming and mechanics , 1988 .

[22]  李幼升,et al.  Ph , 1989 .

[23]  Quelques résultats de stabilité en analyse épigraphique : Approche topologique et quantitative , 1989 .

[24]  On the sum of two maximal monotone operators II , 1996 .

[25]  Gerald Beer,et al.  Conjugate convex functions and the epi-distance topology , 1990 .

[26]  Roberto Lucchetti,et al.  The topology of theρ-hausdorff distance , 1991 .

[27]  J. Baillon,et al.  Examples of unbounded imaginary powers of operators , 1991 .

[28]  P. Shunmugaraj,et al.  On stability of approximate solutions of minimization problems , 1991 .

[29]  Jean-Paul Penot,et al.  The cosmic Hausdorff topology, the bounded Hausdorff topology and continuity of polarity , 1991 .

[30]  Mohamed Soueycatt Analyse épi/hypo-graphique des problèmes de points-selles , 1991 .

[31]  Roberto Lucchetti,et al.  Convex optimization and the epi-distance topology , 1991 .

[32]  Jean-Paul Penot,et al.  Topologies and convergences on the space of convex functions , 1992 .

[33]  Abdellatif Moudafi,et al.  Quantitative stability analysis for maximal monotone operators and semi-groups of contractions , 1993 .

[34]  Somme variationnelle d'opérateurs maximaux monotones , 1993 .

[35]  Gerald Beer,et al.  Topologies on Closed and Closed Convex Sets , 1993 .

[36]  Roger J.-B. Wets,et al.  Quantitative stability of variational systems: III.ε-approximate solutions , 1993, Math. Program..

[37]  M. Théra,et al.  Attouch-Wets convergence and a differential operator for convex functions , 1994 .