Extreme Value Theory for GARCH Processes

We consider the extreme value theory for a stationary GARCH process with iid innovations. One of the basic ingredients of this theory is the fact that, under general conditions, GARCH processes have power law marginal tails and, more generally, regularly varying finite-dimensional distributions. Distributions with power law tails combined with weak dependence conditions imply that the scaled maxima of a GARCH process converge in distribution to a Frechet distribution. The dependence structure of a GARCH process is responsible for the clustering of exceedances of a GARCH process above high and low level exceedances. The size of these clusters can be described by the extremal index. We also consider the convergence of the point processes of exceedances of a GARCH process toward a point process whose Laplace functional can be expressed explicitly in terms of the intensity measure of a Poisson process and a cluster distribution.

[1]  H. Iemoto Modelling the persistence of conditional variances , 1986 .

[2]  J. D. T. Oliveira,et al.  The Asymptotic Theory of Extreme Order Statistics , 1979 .

[3]  Sidney I. Resnick,et al.  Limit Theory for Bilinear Processes with Heavy Tailed Noise , 1996 .

[4]  Daryl J. Daley,et al.  An Introduction to the Theory of Point Processes , 2013 .

[5]  PAUL EMBRECHTS,et al.  Modelling of extremal events in insurance and finance , 1994, Math. Methods Oper. Res..

[6]  Jan Boman,et al.  Support Theorems for the Radon Transform and Cramér-Wold Theorems , 2008, 0802.4373.

[7]  S. Resnick Heavy-Tail Phenomena: Probabilistic and Statistical Modeling , 2006 .

[8]  Richard A. Davis,et al.  Handbook of Financial Time Series , 2009 .

[9]  M. McAleer,et al.  Stationarity and the existence of moments of a family of GARCH processes , 2002 .

[10]  Alexander Lindner,et al.  Stationarity, Mixing, Distributional Properties and Moments of GARCH(p, q)-Processes , 2009 .

[11]  C. Goldie IMPLICIT RENEWAL THEORY AND TAILS OF SOLUTIONS OF RANDOM EQUATIONS , 1991 .

[12]  Holger Rootzén,et al.  Extreme Values in Finance, Telecommunications, and the Environment , 2003 .

[13]  P. Doukhan Mixing: Properties and Examples , 1994 .

[14]  S. Resnick,et al.  Tail Index Estimation for Dependent Data , 1998 .

[15]  Sidney I. Resnick,et al.  Extremal behaviour of solutions to a stochastic difference equation with applications to arch processes , 1989 .

[16]  Richard A. Davis,et al.  The sample autocorrelations of heavy-tailed processes with applications to ARCH , 1998 .

[17]  T. Mikosch,et al.  The sample autocorrections of financial time series models , 1999 .

[18]  Richard A. Davis,et al.  Limit Theory for the Sample Covariance and Correlation Functions of Moving Averages , 1986 .

[19]  T. Mikosch,et al.  Nonstationarities in Financial Time Series, the Long-Range Dependence, and the IGARCH Effects , 2004, Review of Economics and Statistics.

[20]  L. Breiman,et al.  On Some Limit Theorems Similar to the Arc-Sin Law , 1965 .

[21]  H. Kesten Random difference equations and Renewal theory for products of random matrices , 1973 .

[22]  Sidney I. Resnick,et al.  More limit theory for the sample correlation function of moving averages , 1985 .

[23]  F. Lindskog,et al.  On Kesten's counterexample to the Cramér-Wold device for regular variation , 2006 .

[24]  Charles M. Goldie,et al.  Perpetuities with thin tails , 1996, Advances in Applied Probability.

[25]  Peter C. Young,et al.  Nonlinear and Nonstationary Signal Processing , 1998, Technometrics.

[26]  Anne Lohrli Chapman and Hall , 1985 .

[27]  Daniel B. Nelson Stationarity and Persistence in the GARCH(1,1) Model , 1990, Econometric Theory.

[28]  P. Bougerol,et al.  Stationarity of Garch processes and of some nonnegative time series , 1992 .

[29]  F. Boussama Ergodicité, mélange et estimation dans les modèles GARCH , 1998 .

[30]  Richard A. Davis,et al.  Time Series: Theory and Methods , 2013 .

[31]  Abdelkader Mokkadem,et al.  Propriétés de mélange des processus autorégressifs polynomiaux , 1990 .

[32]  I. Ibragimov,et al.  Independent and stationary sequences of random variables , 1971 .

[33]  C. Klüppelberg,et al.  Modelling Extremal Events , 1997 .

[34]  Richard A. Davis,et al.  Probabilistic Properties of Stochastic Volatility Models , 2009 .

[35]  Michael McAleer,et al.  NECESSARY AND SUFFICIENT MOMENT CONDITIONS FOR THE GARCH(r,s) AND ASYMMETRIC POWER GARCH(r,s) MODELS , 2002, Econometric Theory.

[36]  Weighted approximations of tail processes for $\beta$-mixing random variables , 2001 .

[37]  M. R. Leadbetter,et al.  Extremes and Related Properties of Random Sequences and Processes: Springer Series in Statistics , 1983 .

[38]  T. Mikosch,et al.  Limit theory for the sample autocorrelations and extremes of a GARCH (1,1) process , 2000 .

[39]  Richard A. Davis,et al.  Regular variation of GARCH processes , 2002 .

[40]  Sidney I. Resnick,et al.  Limit Theory for Moving Averages of Random Variables with Regularly Varying Tail Probabilities , 1985 .

[41]  S. Resnick Extreme Values, Regular Variation, and Point Processes , 1987 .