An ultrastructural study of connective tissue in mollusc integument: II. Gastropoda.
暂无分享,去创建一个
We studied the ultrastructure of the subepidermal connective tissue (SEC) in different zones of the integument in terrestrial, marine and freshwater gastropods (eight species). In all cases, the SEC was a layer of loose connective tissue between the basal membrane (BM) of the epidermis and the connective tissue of the deeper muscle layers. It was of monotonous structure and not differentiated into layers such as are found in mammalian dermis. The extracellular matrix (ECM) consisted of a network of collagen fibrils of variable diameter, with abundant anchoring devices and proteoglycans. In six species, variables quantities of haemocyanin were present within haemocoelic sinuses present in the SEC. The thickness and density of the BM varied from species to species, as well as within species in the various zones of integument. The ultrastructure of the lamina densa (LD) was indistinguishable from that of BM in bivalves and similar to that in mammals, although basotubules and double pegs were absent. An irregularly spaced lamina lucida was usually present and was often shot thorough with filaments and small protrusions of the LD that connected with epithelial plasma membrane or with hemidesmosomes. A lamina fibroreticularis was not present. LD protrusions characterize the connection between BM and the ECM of SEC. In the terrestrial gastropods, a spongy matrix with ultrastructure closely similar to LD occupied large tracts of the SEC. In the mantle region of Arion rufus, the integumental SEC contained large cavities filled with spherical concretions, probably representing rudiments of a shell. In the mantle where the integument contained abundant muscle fibres, the BM was thick and directly connected to the ECM of the SEC which consisted of compact laminae of collagen fibrils with abundant anchoring devices. Along the edge of the foot of Patella ulyssiponensis, the SEC contained a layer of paramyosinic muscle fibres adhering to the epidermis. No differences or gradations in integumental SEC structure could be related to the phylogenetic position of the species examined.