Structure of the Rotor Ring of F-Type Na+-ATPase from Ilyobacter tartaricus

In the crystal structure of the membrane-embedded rotor ring of the sodium ion–translocating adenosine 5′-triphosphate (ATP) synthase of Ilyobacter tartaricus at 2.4 angstrom resolution, 11 c subunits are assembled into an hourglass-shaped cylinder with 11-fold symmetry. Sodium ions are bound in a locked conformation close to the outer surface of the cylinder near the middle of the membrane. The structure supports an ion-translocation mechanism in the intact ATP synthase in which the binding site converts from the locked conformation into one that opens toward subunit a as the rotor ring moves through the subunit a/c interface.

[1]  R. H. Fillingame,et al.  Interacting helical faces of subunits a and c in the F1Fo ATP synthase of Escherichia coli defined by disulfide cross-linking. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[2]  P. Dimroth,et al.  Molecular mechanism of the ATP synthase's F(o) motor probed by mutational analyses of subunit a. , 2002, Journal of molecular biology.

[3]  U. Matthey,et al.  The central plug in the reconstituted undecameric c cylinder of a bacterial ATP synthase consists of phospholipids , 2001, FEBS letters.

[4]  R. Henderson,et al.  Structure of the mitochondrial ATP synthase by electron cryomicroscopy , 2003, The EMBO journal.

[5]  A. Warshel,et al.  Electrostatic energy and macromolecular function. , 1991, Annual review of biophysics and biophysical chemistry.

[6]  B. Chait,et al.  The structure of the potassium channel: molecular basis of K+ conduction and selectivity. , 1998, Science.

[7]  F. Young Biochemistry , 1955, The Indian Medical Gazette.

[8]  Randy J Read,et al.  Electronic Reprint Biological Crystallography Likelihood-enhanced Fast Rotation Functions Biological Crystallography Likelihood-enhanced Fast Rotation Functions , 2003 .

[9]  Thomas Meier,et al.  Evidence for structural integrity in the undecameric c-rings isolated from sodium ATP synthases. , 2003, Journal of molecular biology.

[10]  M Nayal,et al.  Valence screening of water in protein crystals reveals potential Na+ binding sites. , 1996, Journal of molecular biology.

[11]  Hinrich W. H. Göhlmann,et al.  A Diarylquinoline Drug Active on the ATP Synthase of Mycobacterium tuberculosis , 2005, Science.

[12]  M. Müller,et al.  Inter‐subunit rotation and elastic power transmission in F0F1‐ATPase , 2001, FEBS letters.

[13]  M. A. Kozlova,et al.  The proton-driven rotor of ATP synthase: ohmic conductance (10 fS), and absence of voltage gating. , 2004, Biophysical journal.

[14]  Rotation of the c subunit oligomer in fully functional F1Fo ATP synthase. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[15]  Hans Frauenfelder,et al.  Temperature-dependent X-ray diffraction as a probe of protein structural dynamics , 1979, Nature.

[16]  Y. Zhang,et al.  The γ subunit in the Escherichia coli ATP synthase complex (ECF1F0) extends through the stalk and contacts the c subunits of the F0 part , 1995, FEBS letters.

[17]  J. Antosiewicz,et al.  Empirical relationships between protein structure and carboxyl pKa values in proteins , 2002, Proteins.

[18]  Kazuhiko Kinosita,et al.  Direct observation of the rotation of F1-ATPase , 1997, Nature.

[19]  Ilya A. Balabin,et al.  Insights into the molecular mechanism of rotation in the Fo sector of ATP synthase. , 2004, Biophysical journal.

[20]  R. H. Fillingame,et al.  Defining the Domain of Binding of F1 Subunit ε with the Polar Loop of F0 Subunit c in theEscherichia coli ATP Synthase* , 1999, The Journal of Biological Chemistry.

[21]  Robert Aggeler,et al.  Mechanism of the F(1)F(0)-type ATP synthase, a biological rotary motor. , 2002, Trends in biochemical sciences.

[22]  M. Girvin,et al.  Structural changes linked to proton translocation by subunit c of the ATP synthase , 1999, Nature.

[23]  W. Kühlbrandt,et al.  Molecular architecture of the undecameric rotor of a bacterial Na+-ATP synthase. , 2002, Journal of molecular biology.

[24]  宁北芳,et al.  疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A , 2005 .

[25]  P. Dimroth,et al.  Formation of a functionally active sodium-translocating hybrid F1F0 ATPase in Escherichia coli by homologous recombination. , 1993, European journal of biochemistry.

[26]  A G Leslie,et al.  Molecular architecture of the rotary motor in ATP synthase. , 1999, Science.

[27]  G. Oster,et al.  Torque generation by the Fo motor of the sodium ATPase. , 2004, Biophysical journal.

[28]  P. Dimroth,et al.  Electrical power fuels rotary ATP synthase. , 2003, Structure.

[29]  Karsten Suhre,et al.  ElNémo: a normal mode web server for protein movement analysis and the generation of templates for molecular replacement , 2004, Nucleic Acids Res..

[30]  Henning Stahlberg,et al.  Structural biology: Proton-powered turbine of a plant motor , 2000, Nature.

[31]  U. Gerike,et al.  Molecular basis for the coupling ion selectivity of F1F0 ATP synthases: probing the liganding groups for Na+ and Li+ in the c subunit of the ATP synthase from Propionigenium modestum. , 1997, Biochemistry.

[32]  R. H. Fillingame,et al.  Mechanics of coupling proton movements to c‐ring rotation in ATP synthase , 2003, FEBS letters.

[33]  P. Boyer The ATP synthase--a splendid molecular machine. , 1997, Annual review of biochemistry.

[34]  M. Nakasako,et al.  Crystal structure of the calcium pump of sarcoplasmic reticulum at 2.6 Å resolution , 2000, Nature.

[35]  Jan Pieter Abrahams,et al.  Structure at 2.8 Â resolution of F1-ATPase from bovine heart mitochondria , 1994, Nature.

[36]  M. Girvin,et al.  Solution structure of the transmembrane H+-transporting subunit c of the F1F0 ATP synthase. , 1998, Biochemistry.