Causal analysis of competing atomistic mechanisms in ferroelectric materials from high-resolution scanning transmission electron microscopy data

[1]  X. Bai,et al.  Subunit cell–level measurement of polarization in an individual polar vortex , 2019, Science Advances.

[2]  M. Ziatdinov,et al.  Building ferroelectric from the bottom up: The machine learning analysis of the atomic-scale ferroelectric distortions , 2019, Applied Physics Letters.

[3]  Sergei V. Kalinin,et al.  Learning from Imperfections: Predicting Structure and Thermodynamics from Atomic Imaging of Fluctuations. , 2019, ACS nano.

[4]  Noah D. Goodman,et al.  Pyro: Deep Universal Probabilistic Programming , 2018, J. Mach. Learn. Res..

[5]  Sergei V. Kalinin,et al.  Building and exploring libraries of atomic defects in graphene: Scanning transmission electron and scanning tunneling microscopy study , 2018, Science Advances.

[6]  Mohammad Rashidi,et al.  Autonomous Scanning Probe Microscopy in Situ Tip Conditioning through Machine Learning. , 2018, ACS nano.

[7]  Sergio Escalera,et al.  Explainable and Interpretable Models in Computer Vision and Machine Learning , 2018, The Springer Series on Challenges in Machine Learning.

[8]  Bernhard Schölkopf,et al.  Elements of Causal Inference: Foundations and Learning Algorithms , 2017 .

[9]  Sergei V. Kalinin,et al.  Quantification of flexoelectricity in PbTiO3/SrTiO3 superlattice polar vortices using machine learning and phase-field modeling , 2017, Nature Communications.

[10]  Sergei V. Kalinin,et al.  Consistent Integration of Experimental and Ab Initio Data into Effective Physical Models. , 2017, Journal of chemical theory and computation.

[11]  Sergei V. Kalinin,et al.  Knowledge Extraction from Atomically Resolved Images. , 2017, ACS nano.

[12]  I. Guyon,et al.  Explainable and Interpretable Models in Computer Vision and Machine Learning , 2017, The Springer Series on Challenges in Machine Learning.

[13]  Maxim Ziatdinov,et al.  Learning surface molecular structures via machine vision , 2017, npj Computational Materials.

[14]  Weiwei Sun,et al.  Combining configurational energies and forces for molecular force field optimization. , 2017, The Journal of chemical physics.

[15]  Jing Lv,et al.  Lead-free rare earth-modified BiFeO3 ceramics: Phase structure and electrical properties , 2017 .

[16]  Sergei V. Kalinin,et al.  Atomic-scale observation of structural and electronic orders in the layered compound α-RuCl3 , 2016, Nature Communications.

[17]  Bernhard Schölkopf,et al.  From Deterministic ODEs to Dynamic Structural Causal Models , 2016, UAI.

[18]  H. Funakubo,et al.  Enhancement of Dielectric Properties in Epitaxial Bismuth Ferrite–Bismuth Samarium Ferrite Superlattices , 2016 .

[19]  Elias Bareinboim,et al.  Causal inference and the data-fusion problem , 2016, Proceedings of the National Academy of Sciences.

[20]  Moon J. Kim,et al.  Atomic and electronic structure of Lomer dislocations at CdTe bicrystal interface , 2016, Scientific Reports.

[21]  H. Kurata,et al.  Tuning magnetic anisotropy by interfacially engineering the oxygen coordination environment in a transition metal oxide. , 2016, Nature materials.

[22]  Colin Ophus,et al.  Correcting nonlinear drift distortion of scanning probe and scanning transmission electron microscopies from image pairs with orthogonal scan directions. , 2016, Ultramicroscopy.

[23]  H. Funakubo,et al.  Interface control of a morphotropic phase boundary in epitaxial samarium modified bismuth ferrite superlattices , 2014 .

[24]  Bernhard Schölkopf,et al.  Distinguishing Cause from Effect Using Observational Data: Methods and Benchmarks , 2014, J. Mach. Learn. Res..

[25]  H. Eisaki,et al.  Identifying the 'fingerprint' of antiferromagnetic spin fluctuations in iron pnictide superconductors , 2014, Nature Physics.

[26]  B. Schölkopf,et al.  Justifying Information-Geometric Causal Inference , 2014, 1402.2499.

[27]  Bernhard Schölkopf,et al.  Causal discovery with continuous additive noise models , 2013, J. Mach. Learn. Res..

[28]  S. Louie,et al.  Observing Atomic Collapse Resonances in Artificial Nuclei on Graphene , 2013, Science.

[29]  Sergei V. Kalinin,et al.  Exploring mesoscopic physics of vacancy-ordered systems through atomic scale observations of topological defects. , 2012, Physical review letters.

[30]  K. Volz,et al.  Determination of the chemical composition of GaNAs using STEM HAADF imaging and STEM strain state analysis. , 2012, Ultramicroscopy.

[31]  Bernhard Schölkopf,et al.  Information-geometric approach to inferring causal directions , 2012, Artif. Intell..

[32]  Sergei V. Kalinin,et al.  Atomic-scale evolution of modulated phases at the ferroelectric–antiferroelectric morphotropic phase boundary controlled by flexoelectric interaction , 2012, Nature Communications.

[33]  V. Shut,et al.  Phase Transitions, Magnetic and Piezoelectric Properties of Rare‐Earth‐Substituted BiFeO3 Ceramics , 2011 .

[34]  A Lubk,et al.  Flexoelectric rotation of polarization in ferroelectric thin films. , 2011, Nature materials.

[35]  Yi Zhang,et al.  Spontaneous vortex nanodomain arrays at ferroelectric heterointerfaces. , 2011, Nano letters.

[36]  Sergei V. Kalinin,et al.  Mapping octahedral tilts and polarization across a domain wall in BiFeO3 from Z-contrast scanning transmission electron microscopy image atomic column shape analysis. , 2010, ACS nano.

[37]  M. Weyland,et al.  Direct Evidence for Cation Non‐Stoichiometry and Cottrell Atmospheres Around Dislocation Cores in Functional Oxide Interfaces , 2010, Advanced materials.

[38]  Sergei V. Kalinin,et al.  Suppression of octahedral tilts and associated changes in electronic properties at epitaxial oxide heterostructure interfaces. , 2010, Physical review letters.

[39]  R. Ramesh,et al.  A Strain-Driven Morphotropic Phase Boundary in BiFeO3 , 2009, Science.

[40]  Bernhard Schölkopf,et al.  Nonlinear causal discovery with additive noise models , 2008, NIPS.

[41]  Judea Pearl,et al.  Complete Identification Methods for the Causal Hierarchy , 2008, J. Mach. Learn. Res..

[42]  D. Muller,et al.  Atomic-Scale Chemical Imaging of Composition and Bonding by Aberration-Corrected Microscopy , 2008, Science.

[43]  Le Song,et al.  A Kernel Statistical Test of Independence , 2007, NIPS.

[44]  D. Muller,et al.  Subtleties in ADF imaging and spatially resolved EELS: A case study of low-angle twist boundaries in SrTiO3. , 2006, Ultramicroscopy.

[45]  Yoshinori Tokura,et al.  Critical features of colossal magnetoresistive manganites , 2006 .

[46]  Carl E. Rasmussen,et al.  A Unifying View of Sparse Approximate Gaussian Process Regression , 2005, J. Mach. Learn. Res..

[47]  I. Reaney,et al.  Review of crystal and domain structures in the PbZrxTi1−xO3 solid solution , 2005 .

[48]  A. Rappe,et al.  Predicting morphotropic phase boundary locations and transition temperatures in Pb- and Bi-based perovskite solid solutions from crystal chemical data and first-principles calculations , 2005, cond-mat/0509424.

[49]  E. Dagotto Complexity in Strongly Correlated Electronic Systems , 2005, Science.

[50]  Akira Ohtomo,et al.  Atomic-scale imaging of nanoengineered oxygen vacancy profiles in SrTiO3 , 2004, Nature.

[51]  H. Katzgraber,et al.  Fingerprinting Hysteresis , 2003, cond-mat/0307178.

[52]  A. Tagantsev,et al.  Polarization fatigue in ferroelectric films: Basic experimental findings, phenomenological scenarios, and microscopic features , 2001 .

[53]  Takashi Hotta,et al.  Colossal Magnetoresistant Materials: The Key Role of Phase Separation , 2000, cond-mat/0012117.

[54]  Y. Tokura,et al.  Orbital physics in transition-metal oxides , 2000, Science.

[55]  H. Rabitz,et al.  Coexistence of the critical slowing down and glassy freezing in relaxor ferroelectrics , 1999, cond-mat/9906403.

[56]  A. Tagantsev,et al.  Does freezing in PbMg1/3Nb2/3O3 relaxor manifest itself in nonlinear dielectric susceptibility? , 1999 .

[57]  M. Glinchuk,et al.  Dynamic properties of relaxor ferroelectrics , 1999 .

[58]  M. Glinchuk,et al.  Theory of the nonlinear susceptibility of relaxor ferroelectrics , 1998 .

[59]  Masatoshi Imada,et al.  Metal-insulator transitions , 1998 .

[60]  Dragan Damjanovic,et al.  FERROELECTRIC, DIELECTRIC AND PIEZOELECTRIC PROPERTIES OF FERROELECTRIC THIN FILMS AND CERAMICS , 1998 .

[61]  A. Tagantsev,et al.  Direct evidence for Vögel–Fulcher freezing in relaxor ferroelectrics , 1998 .

[62]  Miyano,et al.  Visualization of the local insulator-metal transition in Pr0.7Ca0. 3MnO3 , 1998, Science.

[63]  Kido,et al.  Insulator-metal transition and giant magnetoresistance in La1-xSrxMnO3. , 1995, Physical review. B, Condensed matter.

[64]  N. Browning,et al.  Atomic-resolution chemical analysis using a scanning transmission electron microscope , 1993, Nature.

[65]  K. Binder,et al.  Theory of orientational glasses models, concepts, simulations , 1992 .

[66]  H. Schmid,et al.  Structure of a ferroelectric and ferroelastic monodomain crystal of the perovskite BiFeO3 , 1990 .

[67]  K. Binder,et al.  Spin glasses: Experimental facts, theoretical concepts, and open questions , 1986 .

[68]  Y. Tang,et al.  On the benefit of aberration-corrected HAADF-STEM for strain determination and its application to tailoring ferroelectric domain patterns. , 2016, Ultramicroscopy.

[69]  Rainer Waser,et al.  Unit-cell scale mapping of ferroelectricity and tetragonality in epitaxial ultrathin ferroelectric films. , 2007, Nature materials.

[70]  J. Pearl Causality: Models, Reasoning and Inference , 2000 .

[71]  Dragan Damjanovic,et al.  Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics , 1998 .

[72]  P. Batson,et al.  Simultaneous STEM imaging and electron energy-loss spectroscopy with atomic-column sensitivity , 1993, Nature.

[73]  Michael I. Jordan,et al.  Advances in Neural Information Processing Systems 30 , 1995 .