On the use of machine learning based ensemble approaches to improve evapotranspiration estimates from croplands across a wide environmental gradient

[1]  Rasu Eeswaran,et al.  Forecast of short-term daily reference evapotranspiration under limited meteorological variables using a hybrid bi-directional long short-term memory model (Bi-LSTM) , 2020 .

[2]  Ke Wang,et al.  Modeling long-term dynamics of crop evapotranspiration using deep learning in a semi-arid environment , 2020 .

[3]  Bingfang Wu,et al.  Synthesis of global actual evapotranspiration from 1982 to 2019 , 2020, Earth System Science Data.

[4]  Yu Feng,et al.  Hybrid particle swarm optimization with extreme learning machine for daily reference evapotranspiration prediction from limited climatic data , 2020, Comput. Electron. Agric..

[5]  Qi Liu,et al.  Monitoring drought using composite drought indices based on remote sensing. , 2020, The Science of the total environment.

[6]  Mladen Todorovic,et al.  Estimation of daily potato crop evapotranspiration using three different machine learning algorithms and four scenarios of available meteorological data , 2020 .

[7]  A. J. Pérez-Luque,et al.  A remote sensing-based dataset to characterize the ecosystem functioning and functional diversity of a Biosphere Reserve: Sierra Nevada (SE Spain) , 2020 .

[8]  Markus Reichstein,et al.  Physics‐Constrained Machine Learning of Evapotranspiration , 2019, Geophysical Research Letters.

[9]  Rudy Gargano,et al.  Artificial intelligence based approaches to evaluate actual evapotranspiration in wetlands. , 2019, The Science of the total environment.

[10]  Matheus Mendes Reis,et al.  Empirical and learning machine approaches to estimating reference evapotranspiration based on temperature data , 2019, Comput. Electron. Agric..

[11]  Meha Jain,et al.  An automated multi-model evapotranspiration mapping framework using remotely sensed and reanalysis data , 2019, Remote Sensing of Environment.

[12]  Shunlin Liang,et al.  Evaluation of ten machine learning methods for estimating terrestrial evapotranspiration from remote sensing , 2019, Int. J. Appl. Earth Obs. Geoinformation.

[13]  Lifeng Wu,et al.  Comparison of neuron-based, kernel-based, tree-based and curve-based machine learning models for predicting daily reference evapotranspiration , 2019, PloS one.

[14]  Onisimo Mutanga,et al.  Including shaded leaves in a sample affects the accuracy of remotely estimating foliar nitrogen , 2019, GIScience & Remote Sensing.

[15]  Francesco Granata,et al.  Evapotranspiration evaluation models based on machine learning algorithms—A comparative study , 2019, Agricultural Water Management.

[16]  W. Silver,et al.  Assessing the carbon and climate benefit of restoring degraded agricultural peat soils to managed wetlands , 2019, Agricultural and Forest Meteorology.

[17]  Prabhat,et al.  Deep learning and process understanding for data-driven Earth system science , 2019, Nature.

[18]  R. Hostache,et al.  A Critical Evaluation on the Role of Aerodynamic and Canopy–Surface Conductance Parameterization in SEB and SVAT Models for Simulating Evapotranspiration: A Case Study in the Upper Biebrza National Park Wetland in Poland , 2018, Water.

[19]  Jun Wang,et al.  Bathymetry retrieval from optical images with spatially distributed support vector machines , 2018, GIScience & Remote Sensing.

[20]  J. Berry,et al.  Sun-induced chlorophyll fluorescence is more strongly related to absorbed light than to photosynthesis at half-hourly resolution in a rice paddy , 2018, Remote Sensing of Environment.

[21]  William J. Massman,et al.  Temporal Dynamics of Aerodynamic Canopy Height Derived From Eddy Covariance Momentum Flux Data Across North American Flux Networks , 2018, Geophysical Research Letters.

[22]  Sha Zhang,et al.  A remote sensing-based two-leaf canopy conductance model: Global optimization and applications in modeling gross primary productivity and evapotranspiration of crops , 2018, Remote Sensing of Environment.

[23]  Lisheng Song,et al.  Evaluating Different Machine Learning Methods for Upscaling Evapotranspiration from Flux Towers to the Regional Scale , 2018, Journal of Geophysical Research: Atmospheres.

[24]  L. You,et al.  Global cropping intensity gaps: Increasing food production without cropland expansion , 2018, Land Use Policy.

[25]  Solomon W. Newete,et al.  Field spectroradiometer and simulated multispectral bands for discriminating invasive species from morphologically similar cohabitant plants , 2018 .

[26]  Yongguo Yang,et al.  Evapotranspiration estimation using four different machine learning approaches in different terrestrial ecosystems , 2018, Comput. Electron. Agric..

[27]  James Cleverly,et al.  Bridging Thermal Infrared Sensing and Physically‐Based Evapotranspiration Modeling: From Theoretical Implementation to Validation Across an Aridity Gradient in Australian Ecosystems , 2018 .

[28]  Sabine Vanhuysse,et al.  Less is more: optimizing classification performance through feature selection in a very-high-resolution remote sensing object-based urban application , 2018 .

[29]  Timothy A. Warner,et al.  Implementation of machine-learning classification in remote sensing: an applied review , 2018 .

[30]  Ronglin Tang,et al.  Global Land Surface Evapotranspiration Estimation From Meteorological and Satellite Data Using the Support Vector Machine and Semiempirical Algorithm , 2018, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[31]  Filipe Aires,et al.  Water, Energy, and Carbon with Artificial Neural Networks (WECANN): A statistically-based estimate of global surface turbulent fluxes and gross primary productivity using solar-induced fluorescence. , 2017, Biogeosciences.

[32]  Nathaniel A. Brunsell,et al.  Regional evapotranspiration from an image-based implementation of the Surface Temperature Initiated Closure (STIC1.2) model and its validation across an aridity gradient in the conterminous US , 2017 .

[33]  Zafer Cömert,et al.  Comparison of Machine Learning Techniques for Fetal Heart Rate Classification , 2017 .

[34]  S. Liang,et al.  Improving global terrestrial evapotranspiration estimation using support vector machine by integrating three process-based algorithms. , 2017 .

[35]  Ronglin Tang,et al.  An End-Member-Based Two-Source Approach for Estimating Land Surface Evapotranspiration From Remote Sensing Data , 2017, IEEE Transactions on Geoscience and Remote Sensing.

[36]  Osisanwo F.Y,et al.  Supervised Machine Learning Algorithms: Classification and Comparison , 2017 .

[37]  K. Muramatsu,et al.  Determination of rice paddy parameters in the global gross primary production capacity estimation algorithm using 6 years of JP-MSE flux observation data , 2017 .

[38]  P. Gowda,et al.  Performance of five surface energy balance models for estimating daily evapotranspiration in high biomass sorghum , 2017 .

[39]  Yufang Jin,et al.  Evapotranspiration Estimate over an Almond Orchard Using Landsat Satellite Observations , 2017, Remote. Sens..

[40]  Dieu Tien Bui,et al.  Biomass estimation of Sonneratia caseolaris (l.) Engler at a coastal area of Hai Phong city (Vietnam) using ALOS-2 PALSAR imagery and GIS-based multi-layer perceptron neural networks , 2017 .

[41]  Martha C. Anderson,et al.  The future of evapotranspiration: Global requirements for ecosystem functioning, carbon and climate feedbacks, agricultural management, and water resources , 2017 .

[42]  Fengmei Yao,et al.  Using precipitation, vertical root distribution, and satellite‐retrieved vegetation information to parameterize water stress in a Penman‐Monteith approach to evapotranspiration modeling under Mediterranean climate , 2017 .

[43]  Youngryel Ryu,et al.  Multi-scale evaluation of global gross primary productivity and evapotranspiration products derived from Breathing Earth System Simulator (BESS) , 2016 .

[44]  Eva Boegh,et al.  Canopy-scale biophysical controls of transpiration and evaporation in the Amazon Basin , 2016 .

[45]  Jungho Im,et al.  Evaluating five remote sensing based single-source surface energy balance models for estimating daily evapotranspiration in a humid subtropical climate , 2016, Int. J. Appl. Earth Obs. Geoinformation.

[46]  Jin Zhang,et al.  An overview and comparison of machine-learning techniques for classification purposes in digital soil mapping , 2016 .

[47]  M. Fischer,et al.  Vulnerability of crops and native grasses to summer drying in the U.S. Southern Great Plains , 2015 .

[48]  Matthew F. McCabe,et al.  ECOSTRESS: NASA's Next Generation Mission to Measure Evapotranspiration From the International Space Station , 2015, Water Resources Research.

[49]  Matthew F. McCabe,et al.  The WACMOS-ET project – Part 1: Tower-scale evaluation of four remote-sensing-based evapotranspiration algorithms , 2015 .

[50]  Xiaotong Zhang,et al.  Using Bayesian model averaging to estimate terrestrial evapotranspiration in China , 2015 .

[51]  S. Liang,et al.  A satellite-based hybrid algorithm to determine the Priestley–Taylor parameter for global terrestrial latent heat flux estimation across multiple biomes , 2015 .

[52]  William P. Kustas,et al.  Reintroducing radiometric surface temperature into the Penman‐Monteith formulation , 2015 .

[53]  D. Baldocchi,et al.  Does day and night sampling reduce spurious correlation between canopy photosynthesis and ecosystem respiration , 2015 .

[54]  James W. Jones,et al.  Multimodel ensembles of wheat growth: many models are better than one , 2015, Global change biology.

[55]  D. Baldocchi,et al.  Agricultural peatland restoration: effects of land‐use change on greenhouse gas (CO2 and CH4) fluxes in the Sacramento‐San Joaquin Delta , 2015, Global change biology.

[56]  S. Shukla,et al.  Support vector machine based modeling of evapotranspiration using hydro-climatic variables in a sub-tropical environment , 2015 .

[57]  M. Mauder,et al.  Mesoscale Eddies Affect Near-Surface Turbulent Exchange: Evidence from Lidar and Tower Measurements , 2015 .

[58]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[59]  D. Lu,et al.  A comparative analysis of approaches for successional vegetation classification in the Brazilian Amazon , 2014 .

[60]  Yashar Falamarzi,et al.  Estimating evapotranspiration from temperature and wind speed data using artificial and wavelet neural networks (WNNs) , 2014 .

[61]  Jiquan Chen,et al.  Net ecosystem methane and carbon dioxide exchanges in a Lake Erie coastal marsh and a nearby cropland , 2014, Journal of Geophysical Research: Biogeosciences.

[62]  S. Liang,et al.  Bayesian multimodel estimation of global terrestrial latent heat flux from eddy covariance, meteorological, and satellite observations , 2014 .

[63]  M. Mccabe,et al.  Multi-site evaluation of terrestrial evaporation models using FLUXNET data , 2014 .

[64]  Yongming Du,et al.  Evaluation of the VIIRS and MODIS LST products in an arid area of Northwest China , 2014 .

[65]  J. Ardö,et al.  A Surface Temperature Initiated Closure (STIC) for surface energy balance fluxes , 2014 .

[66]  Dong Wang,et al.  Energy budget closure observed in paired Eddy Covariance towers with increased and continuous daily turbulence , 2014 .

[67]  M.N.S. Swamy,et al.  Neural Networks and Statistical Learning , 2013 .

[68]  A. Sabziparvar,et al.  Artificial neural network–genetic algorithm for estimation of crop evapotranspiration in a semi-arid region of Iran , 2013, Neural Computing and Applications.

[69]  Shaoqiang Wang,et al.  Diagnostic analysis of interannual variation of global land evapotranspiration over 1982–2011: Assessing the impact of ENSO , 2013 .

[70]  Karl Schneider,et al.  Patterns and scaling properties of surface soil moisture in an agricultural landscape: An ecohydrological modeling study , 2013 .

[71]  Ronglin Tang,et al.  Spatial-scale effect on the SEBAL model for evapotranspiration estimation using remote sensing data , 2013 .

[72]  Prasanna H. Gowda,et al.  Operational Evapotranspiration Mapping Using Remote Sensing and Weather Datasets: A New Parameterization for the SSEB Approach , 2013 .

[73]  S. Liang,et al.  MODIS-driven estimation of terrestrial latent heat flux in China based on a modified Priestley-Taylor algorithm , 2013 .

[74]  Joshua B. Fisher,et al.  Latent Heat Flux and Canopy Conductance Based on Penman–Monteith, Priestley–Taylor Equation, and Bouchet’s Complementary Hypothesis , 2013 .

[75]  Yu Zhang,et al.  An Improvement of Roughness Height Parameterization of the Surface Energy Balance System (SEBS) over the Tibetan Plateau , 2013 .

[76]  A. Huete,et al.  Evaluation of optical remote sensing to estimate actual evapotranspiration and canopy conductance , 2013 .

[77]  Olivier Merlin,et al.  Intercomparison of four remote-sensing-based energy balance methods to retrieve surface evapotranspiration and water stress of irrigated fields in semi-arid climate , 2013 .

[78]  S. Verma,et al.  Gross primary production and ecosystem respiration of irrigated and rainfed maize–soybean cropping systems over 8 years , 2012 .

[79]  W. Oechel,et al.  Global estimation of evapotranspiration using a leaf area index-based surface energy and water balance model , 2012 .

[80]  Martha C. Anderson,et al.  Use of Landsat thermal imagery in monitoring evapotranspiration and managing water resources , 2012 .

[81]  V. Singh,et al.  A Two-source Trapezoid Model for Evapotranspiration (TTME) from satellite imagery , 2012 .

[82]  Wout Verhoef,et al.  Integration of soil moisture in SEBS for improving evapotranspiration estimation under water stress conditions , 2012 .

[83]  Matteo Detto,et al.  Gross ecosystem photosynthesis causes a diurnal pattern in methane emission from rice , 2012 .

[84]  T. A. Black,et al.  On the temporal upscaling of evapotranspiration from instantaneous remote sensing measurements to 8-day mean daily-sums , 2012 .

[85]  A. Cescatti,et al.  Seasonal trends and environmental controls of methane emissions in a rice paddy field in Northern Italy , 2011 .

[86]  R. Dickinson,et al.  A review of global terrestrial evapotranspiration: Observation, modeling, climatology, and climatic variability , 2011 .

[87]  Zhao-Liang Li,et al.  How sensitive is SEBAL to changes in input variables, domain size and satellite sensor? , 2011 .

[88]  G. Tedeschi,et al.  Sea‐spray aerosol particles generated in the surf zone , 2011 .

[89]  Belkacem Draoui,et al.  Neural network approach to reference evapotranspiration modeling from limited climatic data in arid regions , 2011, International Journal of Biometeorology.

[90]  Maosheng Zhao,et al.  Improvements to a MODIS global terrestrial evapotranspiration algorithm , 2011 .

[91]  D. Lobell,et al.  Climate Trends and Global Crop Production Since 1980 , 2011, Science.

[92]  Paolo De Angelis,et al.  Reconciling the optimal and empirical approaches to modelling stomatal conductance , 2011 .

[93]  V. Magliulo,et al.  The influence of management and environmental variables on soil N2O emissions in a crop system in Southern Italy , 2011, Plant and Soil.

[94]  Chih-Jen Lin,et al.  LIBSVM: A library for support vector machines , 2011, TIST.

[95]  Benoit Gabrielle,et al.  Carbon, nitrogen and Greenhouse gases budgets over a four years crop rotation in northern France , 2011, Plant and Soil.

[96]  Eric F. Wood,et al.  Global estimates of evapotranspiration for climate studies using multi-sensor remote sensing data: Evaluation of three process-based approaches , 2011 .

[97]  T. Griffis,et al.  Influence of C4 vegetation on 13CO2 discrimination and isoforcing in the upper Midwest, United States , 2010 .

[98]  Nuno Carvalhais,et al.  Deciphering the components of regional net ecosystem fluxes following a bottom-up approach for the Iberian Peninsula , 2010 .

[99]  Arnaud Carrara,et al.  Variability in carbon exchange of European croplands , 2010 .

[100]  Pete Smith,et al.  The net biome production of full crop rotations in Europe , 2010 .

[101]  Ralf Wieland,et al.  Classification in conservation biology: A comparison of five machine-learning methods , 2010, Ecol. Informatics.

[102]  R. Dickinson,et al.  Evidence for decadal variation in global terrestrial evapotranspiration between 1982 and 2002: 1. Model development , 2010 .

[103]  T. Holmes,et al.  Global land-surface evaporation estimated from satellite-based observations , 2010 .

[104]  S. Seneviratne,et al.  Recent decline in the global land evapotranspiration trend due to limited moisture supply , 2010, Nature.

[105]  Rodney T. Venterea,et al.  Impact of reduced tillage and cover cropping on the greenhouse gas budget of a maize/soybean rotation ecosystem , 2009 .

[106]  P. Béziat,et al.  Carbon balance of a three crop succession over two cropland sites in South West France , 2009 .

[107]  Di Long,et al.  Intercomparison of remote sensing‐based models for estimation of evapotranspiration and accuracy assessment based on SWAT , 2008 .

[108]  S. Goetz,et al.  Satellite based analysis of northern ET trends and associated changes in the regional water balance from 1983 to 2005 , 2008 .

[109]  Amélie Rajaud,et al.  A simple surface conductance model to estimate regional evaporation using MODIS leaf area index and the Penman‐Monteith equation , 2008 .

[110]  Andreas Christmann,et al.  Support vector machines , 2008, Data Mining and Knowledge Discovery Handbook.

[111]  Shunlin Liang,et al.  An improved method for estimating global evapotranspiration based on satellite determination of surface net radiation, vegetation index, temperature, and soil moisture , 2008, IGARSS 2008 - 2008 IEEE International Geoscience and Remote Sensing Symposium.

[112]  D. Baldocchi,et al.  Global estimates of the land–atmosphere water flux based on monthly AVHRR and ISLSCP-II data, validated at 16 FLUXNET sites , 2008 .

[113]  G. McLachlan,et al.  The EM Algorithm and Extensions: Second Edition , 2008 .

[114]  Shafiqul Islam,et al.  Estimation of evaporative fraction and evapotranspiration from MODIS products using a complementary based model , 2008 .

[115]  Stéphane Canu,et al.  Comments on the "Core Vector Machines: Fast SVM Training on Very Large Data Sets" , 2007, J. Mach. Learn. Res..

[116]  Zhanqing Li,et al.  A simple method to estimate actual evapotranspiration from a combination of net radiation, vegetation index, and temperature , 2007 .

[117]  Richard G. Allen,et al.  Satellite-Based Energy Balance for Mapping Evapotranspiration with Internalized Calibration (METRIC)—Model , 2007 .

[118]  Hubert H. G. Savenije,et al.  A monthly interception equation based on the statistical characteristics of daily rainfall , 2006 .

[119]  A-Xing Zhu,et al.  Prediction of Continental-Scale Evapotranspiration by Combining MODIS and AmeriFlux Data Through Support Vector Machine , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[120]  Marc Aubinet,et al.  Annual net ecosystem carbon exchange by a sugar beet crop , 2006 .

[121]  Zhanqing Li,et al.  Estimation of evaporative fraction from a combination of day and night land surface temperatures and NDVI: A new method to determine the Priestley-Taylor parameter , 2006 .

[122]  Steven R. Evett,et al.  Nighttime Evapotranspiration from Alfalfa and Cotton in a Semiarid Climate , 2006 .

[123]  Carl J. Bernacchi,et al.  The conversion of the corn/soybean ecosystem to no‐till agriculture may result in a carbon sink , 2005 .

[124]  Edwin W. Pak,et al.  An extended AVHRR 8‐km NDVI dataset compatible with MODIS and SPOT vegetation NDVI data , 2005 .

[125]  S. Verma,et al.  Testing a model of CO2, water and energy exchange in Great Plains tallgrass prairie and wheat ecosystems , 2005 .

[126]  Andrew E. Suyker,et al.  Annual carbon dioxide exchange in irrigated and rainfed maize-based agroecosystems , 2005 .

[127]  A. Raftery,et al.  Using Bayesian Model Averaging to Calibrate Forecast Ensembles , 2005 .

[128]  D. Guyon,et al.  Quality analysis applied on eddy covariance measurements at complex forest sites using footprint modelling , 2005 .

[129]  P. Anthoni,et al.  Forest and agricultural land‐use‐dependent CO2 exchange in Thuringia, Germany , 2004 .

[130]  Chris H. Q. Ding,et al.  Cluster Structure of K-means Clustering via Principal Component Analysis , 2004, PAKDD.

[131]  Chih-Jen Lin,et al.  Probability Estimates for Multi-class Classification by Pairwise Coupling , 2003, J. Mach. Learn. Res..

[132]  Ray Leuning,et al.  A coupled model of stomatal conductance, photosynthesis and transpiration , 2003 .

[133]  Jing M. Chen,et al.  Mapping evapotranspiration based on remote sensing: An application to Canada's landmass , 2003 .

[134]  Zhilin Zhu,et al.  A remote sensing model for monitoring soil evaporation based on differential thermal inertia and its validation , 2003, Science in China Series D Earth Sciences.

[135]  Z. Su The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes , 2002 .

[136]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[137]  Marvin E. Jensen,et al.  ASCE's standardized reference evapotranspiration equation. , 2001 .

[138]  Jasmina Arifovic,et al.  Using genetic algorithms to select architecture of a feedforward artificial neural network , 2001 .

[139]  A. Huete,et al.  Optical-Biophysical Relationships of Vegetation Spectra without Background Contamination , 2000 .

[140]  J. Norman,et al.  Correcting eddy-covariance flux underestimates over a grassland , 2000 .

[141]  Le Jiang,et al.  A methodology for estimation of surface evapotranspiration over large areas using remote sensing observations , 1999 .

[142]  A. Holtslag,et al.  A remote sensing surface energy balance algorithm for land (SEBAL)-1. Formulation , 1998 .

[143]  W. Massman,et al.  AN ANALYTICAL ONE-DIMENSIONAL MODEL OF MOMENTUM TRANSFER BY VEGETATION OF ARBITRARY STRUCTURE , 1997 .

[144]  W. Liu,et al.  Monitoring regional drought using the Vegetation Condition Index , 1996 .

[145]  John L. Monteith,et al.  Accommodation between transpiring vegetation and the convective boundary layer , 1995 .

[146]  Esmaiel Malek,et al.  Night-time evapotranspiration vs. daytime and 24h evapotranspiration , 1992 .

[147]  Bernhard E. Boser,et al.  A training algorithm for optimal margin classifiers , 1992, COLT '92.

[148]  A. Huete A soil-adjusted vegetation index (SAVI) , 1988 .

[149]  W. Rawls,et al.  Estimating generalized soil-water characteristics from texture , 1986 .

[150]  M. Novello,et al.  Geodesic motion and confinement in Gödel's universe , 1983 .

[151]  S. Idso,et al.  Canopy temperature as a crop water stress indicator , 1981 .

[152]  Wilfried Brutsaert,et al.  An advection-aridity approach to estimate actual regional evapotranspiration. , 1979 .

[153]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[154]  P. Jarvis The Interpretation of the Variations in Leaf Water Potential and Stomatal Conductance Found in Canopies in the Field , 1976 .

[155]  C. Priestley,et al.  On the Assessment of Surface Heat Flux and Evaporation Using Large-Scale Parameters , 1972 .

[156]  I. S. Bowen The Ratio of Heat Losses by Conduction and by Evaporation from any Water Surface , 1926 .

[157]  Ke-Lin Du,et al.  Clustering I: Basic Clustering Models and Algorithms , 2019, Neural Networks and Statistical Learning.

[158]  Ke-Lin Du,et al.  Multilayer Perceptrons: Architecture and Error Backpropagation , 2019, Neural Networks and Statistical Learning.

[159]  B. Lamb,et al.  AmeriFlux US-RC3 WSU Lind Dryland Research Station , 2016 .

[160]  Zhuguo Ma,et al.  Comparison of satellite-based evapotranspiration models over terrestrial ecosystems in China , 2014 .

[161]  Ke-Lin Du,et al.  Combining Multiple Learners: Data Fusion and Emsemble Learning , 2014 .

[162]  Joshua B. Fisher,et al.  ET come home: potential evapotranspiration in geographical ecology , 2011 .

[163]  Jeffrey G. Arnold,et al.  Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations , 2007 .

[164]  Massimo Menenti,et al.  S-SEBI: A simple remote sensing algorithm to estimate the surface energy balance , 2000 .

[165]  John Platt,et al.  Probabilistic Outputs for Support vector Machines and Comparisons to Regularized Likelihood Methods , 1999 .

[166]  L. S. Pereira,et al.  Crop evapotranspiration : guidelines for computing crop water requirements , 1998 .

[167]  R. Leuning,et al.  Rainfall interception and evaporation from soil below a wheat canopy , 1994 .

[168]  Warren S. Sarle,et al.  Neural Networks and Statistical Models , 1994 .

[169]  J. Monteith Evaporation and environment. , 1965, Symposia of the Society for Experimental Biology.