PTIME Parametric Verification of Safety Properties for Reasonable Linear Hybrid Automata

This paper identifies an industrially relevant class of linear hybrid automata (LHA) called reasonable LHA for which parametric verification of convex safety properties with exhaustive entry states can be verified in polynomial time and time-bounded reachability can be decided in nondeterministic polynomial time for non-parametric verification and in exponential time for parametric verification. Properties with exhaustive entry states are restricted to runs originating in a (specified) inner envelope of some mode-invariant. Deciding whether an LHA is reasonable is shown to be decidable in polynomial time.

[1]  Viorica Sofronie-Stokkermans,et al.  Hierarchic Reasoning in Local Theory Extensions , 2005, CADE.

[2]  Viorica Sofronie-Stokkermans Efficient Hierarchical Reasoning about Functions over Numerical Domains , 2008, KI.

[3]  Viorica Sofronie-Stokkermans Hierarchical Reasoning for the Verification of Parametric Systems , 2010, IJCAR.

[4]  Gabor Karsai,et al.  Semantic Translation of Simulink/Stateflow Models to Hybrid Automata Using Graph Transformations , 2004, GT-VMT@ETAPS.

[5]  Eduardo D. Sontag,et al.  Real Addition and the Polynomial Hierarchy , 1985, Inf. Process. Lett..

[6]  George J. Pappas,et al.  Robustness of Temporal Logic Specifications , 2006, FATES/RV.

[7]  Jan Lunze,et al.  Handbook of hybrid systems control : theory, tools, applications , 2009 .

[8]  Carsten Ihlemann,et al.  Decidability and complexity for the verification of safety properties of reasonable linear hybrid automata , 2011, HSCC '11.

[9]  Sumit Kumar Jha,et al.  A Counterexample-Guided Approach to Parameter Synthesis for Linear Hybrid Automata , 2008, HSCC.

[10]  Bernhard Nebel,et al.  Reasoning about temporal relations: a maximal tractable subclass of Allen's interval algebra , 1994, JACM.

[11]  Martin Fränzle,et al.  A Symbolic Decision Procedure for Robust Safety of Timed Systems , 2007, 14th International Symposium on Temporal Representation and Reasoning (TIME'07).

[12]  A. Tiwari Formal Semantics and Analysis Methods for Simulink Stateflow Models , 2001 .

[13]  Thomas Sturm,et al.  REDLOG: computer algebra meets computer logic , 1997, SIGS.

[14]  Henning Dierks,et al.  Exact and fully symbolic verification of linear hybrid automata with large discrete state spaces , 2012, Sci. Comput. Program..

[15]  Sanjit A. Seshia,et al.  Symbolic Reachability Analysis of Lazy Linear Hybrid Automata , 2007, FORMATS.

[16]  Thomas A. Henzinger,et al.  Automatic symbolic verification of embedded systems , 1993, 1993 Proceedings Real-Time Systems Symposium.

[17]  T. Henzinger,et al.  Algorithmic Analysis of Nonlinear Hybrid Systems , 1998, CAV.

[18]  Farn Wang Symbolic Parametric Safety Analysis of Linear Hybrid Systems with BDD-Like Data-Structures , 2004, CAV.

[19]  Carsten Ihlemann,et al.  System Description: H-PILoT , 2009, CADE.

[20]  Thomas Brihaye,et al.  On the expressiveness and decidability of o-minimal hybrid systems , 2005, J. Complex..

[21]  G. J. Tee,et al.  Khachian's efficient algorithm for linear inequalities and linear programming , 1980, SGNM.

[22]  André Platzer,et al.  Logical Verification and Systematic Parametric Analysis in Train Control , 2008, HSCC.

[23]  Narendra Karmarkar,et al.  A new polynomial-time algorithm for linear programming , 1984, Comb..

[24]  Thomas Brihaye,et al.  On O-Minimal Hybrid Systems , 2004, HSCC.

[25]  André Platzer,et al.  European Train Control System: A Case Study in Formal Verification , 2009, ICFEM.

[26]  Spiros Skiadopoulos,et al.  Querying temporal and spatial constraint networks in PTIME , 2000, Artif. Intell..

[27]  G. Frehse Handbook of Hybrid Systems Control: Verification tools for linear hybrid automata , 2009 .

[28]  Pravin Varaiya,et al.  What's decidable about hybrid automata? , 1995, STOC '95.

[29]  P. S. Thiagarajan,et al.  The Discrete Time Behavior of Lazy Linear Hybrid Automata , 2005, HSCC.

[30]  Joseph S. Miller Decidability and Complexity Results for Timed Automata and Semi-linear Hybrid Automata , 2000, HSCC.

[31]  Stefan Ratschan,et al.  Guaranteed Termination in the Verification of LTL Properties of Non-linear Robust Discrete Time Hybrid Systems , 2005, ATVA.

[32]  Nikolaj Bjørner,et al.  Z3: An Efficient SMT Solver , 2008, TACAS.

[33]  Manolis Koubarakis,et al.  Tractable disjunctions of linear constraints: basic results and applications to temporal reasoning , 2001, Theor. Comput. Sci..

[34]  Gerardo Lafferriere,et al.  A New Class of Decidable Hybrid Systems , 1999, HSCC.

[35]  Sumit Gulwani,et al.  Constraint-Based Approach for Analysis of Hybrid Systems , 2008, CAV.