Constructing common base domain by cues from Voronoi diagram

In this paper, we propose a novel algorithm to construct common base domains for cross-parameterization constrained by anchor points. Based on the common base domains, a bijective mapping between given models can be established. Experimental results show that the distortion in a cross-parameterization generated on our common base domains is much smaller than that of a mapping on domains constructed by prior methods. Different from prior algorithms that generate domains by a heuristic of having higher priority to link the shortest paths between anchor points, we compute the surface Voronoi diagram of anchor points to find out the initial connectivity for the base domains. The final common base domains can be efficiently generated from the initial connectivity. The Voronoi diagram of the anchor points gives better cues than the heuristic of connecting shortest paths greedily.

[1]  David P. Dobkin,et al.  MAPS: multiresolution adaptive parameterization of surfaces , 1998, SIGGRAPH.

[2]  Thomas A. Funkhouser,et al.  Möbius voting for surface correspondence , 2009, ACM Trans. Graph..

[3]  Tony DeRose,et al.  Multiresolution analysis of arbitrary meshes , 1995, SIGGRAPH.

[4]  Lee Markosian,et al.  Skin: a constructive approach to modeling free-form shapes , 1999, SIGGRAPH.

[5]  Olga Sorkine-Hornung,et al.  Template-Based 3D Model Fitting Using Dual-Domain Relaxation , 2011, IEEE Transactions on Visualization and Computer Graphics.

[6]  Hong Qin,et al.  Surface Mapping Using Consistent Pants Decomposition , 2009, IEEE Transactions on Visualization and Computer Graphics.

[7]  Christoph M. Hoffmann,et al.  Geometric and Solid Modeling: An Introduction , 1989 .

[8]  Leonidas J. Guibas,et al.  One Point Isometric Matching with the Heat Kernel , 2010, Comput. Graph. Forum.

[9]  Alla Sheffer,et al.  Matchmaker: constructing constrained texture maps , 2003, ACM Trans. Graph..

[10]  Hugues Hoppe,et al.  Inter-surface mapping , 2004, ACM Trans. Graph..

[11]  Andrei Khodakovsky,et al.  Globally smooth parameterizations with low distortion , 2003, ACM Trans. Graph..

[12]  Christoph M. Hoffmann,et al.  Geometric and Solid Modeling , 1989 .

[13]  Charlie C. L. Wang,et al.  Efficient Optimization of Common Base Domains for Cross Parameterization , 2012, IEEE Transactions on Visualization and Computer Graphics.

[14]  LiuYong-Jin,et al.  Construction of Iso-Contours, Bisectors, and Voronoi Diagrams on Triangulated Surfaces , 2011 .

[15]  Peter Schröder,et al.  Consistent mesh parameterizations , 2001, SIGGRAPH.

[16]  Hao Zhang,et al.  Robust 3D Shape Correspondence in the Spectral Domain , 2006, IEEE International Conference on Shape Modeling and Applications 2006 (SMI'06).

[17]  Hong Qin,et al.  Globally Optimal Surface Mapping for Surfaces with Arbitrary Topology , 2008, IEEE Transactions on Visualization and Computer Graphics.

[18]  Jovan Popovic,et al.  Deformation transfer for triangle meshes , 2004, ACM Trans. Graph..

[19]  Paolo Cignoni,et al.  Almost Isometric Mesh Parameterization through Abstract Domains , 2010, IEEE Transactions on Visualization and Computer Graphics.

[20]  Charlie C. L. Wang,et al.  Duplicate-skins for compatible mesh modelling , 2006, SPM '06.

[21]  T. Funkhouser,et al.  Möbius voting for surface correspondence , 2009, SIGGRAPH 2009.

[22]  Pierre Alliez,et al.  Periodic global parameterization , 2006, TOGS.

[23]  Alla Sheffer,et al.  Cross-parameterization and compatible remeshing of 3D models , 2004, ACM Trans. Graph..

[24]  Charlie C. L. Wang,et al.  Bending-Invariant Correspondence Matching on 3-D Human Bodies for Feature Point Extraction , 2011, IEEE Transactions on Automation Science and Engineering.

[25]  Hugues Hoppe,et al.  Spherical parametrization and remeshing , 2003, ACM Trans. Graph..