Status of land cover classification accuracy assessment

The production of thematic maps, such as those depicting land cover, using an image classification is one of the most common applications of remote sensing. Considerable research has been directed at the various components of the mapping process, including the assessment of accuracy. This paper briefly reviews the background and methods of classification accuracy assessment that are commonly used and recommended in the research literature. It is, however, evident that the research community does not universally adopt the approaches that are often recommended to it, perhaps a reflection of the problems associated with accuracy assessment, and typically fails to achieve the accuracy targets commonly specified. The community often tends to use, unquestioningly, techniques based on the confusion matrix for which the correct application and interpretation requires the satisfaction of often untenable assumptions (e.g., perfect coregistration of data sets) and the provision of rarely conveyed information (e.g., sampling design for ground data acquisition). Eight broad problem areas that currently limit the ability to appropriately assess, document, and use the accuracy of thematic maps derived from remote sensing are explored. The implications of these problems are that it is unlikely that a single standardized method of accuracy assessment and reporting can be identified, but some possible directions for future research that may facilitate accuracy assessment are highlighted.

[1]  Goksel Türk,et al.  Gt index: A measure of the success of prediction , 1979 .

[2]  Hugh G. Lewis,et al.  A generalized confusion matrix for assessing area estimates from remotely sensed data , 2001 .

[3]  William G. Cochran,et al.  Sampling Techniques, 3rd Edition , 1963 .

[4]  P. C. Smits,et al.  QUALITY ASSESSMENT OF IMAGE CLASSIFICATION ALGORITHMS FOR LAND-COVER MAPPING , 1999 .

[5]  Forbes Ad,et al.  Classification-algorithm evaluation: five performance measures based on confusion matrices. , 1995 .

[6]  Eon O'Mongain,et al.  The use of Neural Networks for the estimation of oceanic constituents based on the MERIS instrument , 1999 .

[7]  G. M. Foody Remote sensing of tropical forest environments: Towards the monitoring of sustainable resource use , 2001 .

[8]  G. Foody Monitoring the magnitude of land-cover change around the southern limits of the Sahara , 2001 .

[9]  G. M. Foody The Continuum of Classification Fuzziness in Thematic Mapping , 1999 .

[10]  Donald A. Walker,et al.  Accuracy Assessment of a Land-Cover Map of the Kuparu k River Basin, Alaska: Considerations for Remote Regions , 1998 .

[11]  R. Congalton Using spatial autocorrelation analysis to explore the errors in maps generated from remotely sensed data , 1988 .

[12]  Frédéric Baret,et al.  Developments in the 'validation' of satellite sensor products for the study of the land surface , 2000 .

[13]  George Alan Blackburn,et al.  Introducing New Indices for Accuracy Evaluation of Classified Images Representing Semi-Natural Woodland Environments. , 2001 .

[14]  John A. Richards,et al.  Classifier performance and map accuracy , 1996 .

[15]  G.B.M. Heuvelink,et al.  Proceedings of the 4th international symposium on spatial accuracy. Assessment in natural resources and environmental sciences , 2000 .

[16]  David L. Verbyla,et al.  Optimistic bias in classification accuracy assessment , 1996 .

[17]  Limin Yang,et al.  An analysis of the IGBP global land-cover characterization process , 1999 .

[18]  A. Winsor Sampling techniques. , 2000, Nursing times.

[19]  J. Bythell,et al.  Habitat mapping in the Caribbean for management and conservation: Use and assessment of aerial photography , 1995 .

[20]  J. Cihlar Land cover mapping of large areas from satellites: Status and research priorities , 2000 .

[21]  Jonathan Smith,et al.  Assessing the Accuracy of Large-Area Land Cover Maps: Experiences from the Multi-Resolution Land-Cover Characteristics (MRLC) Project , 2000 .

[22]  Robert J. Charlson,et al.  Atmospheric chemistry and air quality , 1975 .

[23]  N A Felix,et al.  ACCURACY ASSESSMENT OF A LANDSAT-ASSISTED VEGETATION MAP OF THE COASTAL PLAIN OF THE ARCTIC NATIONAL WILDLIFE REFUGE , 1989 .

[24]  S. Aronoff,et al.  The minimum accuracy value as an index of classification accuracy , 1985 .

[25]  Thomas R. Allen,et al.  Advances in remote sensing and GIS analysis , 2001 .

[26]  Sytze de Bruin,et al.  Querying probabilistic land cover data using fuzzy set theory , 2000, Int. J. Geogr. Inf. Sci..

[27]  A. Jones,et al.  The Land Cover Map of Great Britain: an automated classification of Landsat Thematic Mapper data , 1994 .

[28]  John R. Jensen Introductory Digital Image Processing , 2004 .

[29]  M. Hansen,et al.  The DISCover validation image interpretation process , 1999 .

[30]  A. Purvis,et al.  Getting the measure of biodiversity , 2000, Nature.

[31]  Stephen V. Stehman,et al.  Practical Implications of Design-Based Sampling Inference for Thematic Map Accuracy Assessment , 2000 .

[32]  Phaedon C. Kyriakidis,et al.  A geostatistical approach for mapping thematic classification accuracy and evaluating the impact of inaccurate spatial data on ecological model predictions , 2001, Environmental and Ecological Statistics.

[33]  D. Skole Data on global land-cover change: acquisition, assessment, and analysis , 1994 .

[34]  D. Gehring,et al.  Landsat wildland mapping accuracy. , 1980 .

[35]  John A. Silander,et al.  Delineating forest canopy species in the northeastern united states using multi-temporal TM imagery , 1998 .

[36]  S. Trudgill,et al.  Soils in the British Isles , 1976 .

[37]  Stephen V. Stehman,et al.  Estimating standard errors of accuracy assessment statistics under cluster sampling , 1997 .

[38]  de S. Bruin,et al.  Spatial uncertainty in estimates of the areal extent of land cover types , 2000 .

[39]  Giles M. Foody,et al.  On the compensation for chance agreement in image classification accuracy assessment, Photogram , 1992 .

[40]  R. Congalton,et al.  Accuracy assessment: a user's perspective , 1986 .

[41]  L.L.F. Janssen,et al.  Accuracy assessment of satellite derived land - cover data : a review , 1994 .

[42]  G. Shaw,et al.  Land Use , 1977, Ecology, Revised and Expanded.

[43]  T Turner The way forward. , 1989, Nursing times.

[44]  Giles M. Foody,et al.  Estimation of sub-pixel land cover composition in the presence of untrained classes , 2000 .

[45]  Stephen V. Stehman,et al.  Thematic map accuracy assessment from the perspective of finite population sampling , 1995 .

[46]  J. Townshend,et al.  NDVI-derived land cover classifications at a global scale , 1994 .

[47]  P. Fisher Visualization of the reliability in classified remotely sensed images , 1994 .

[48]  G. H. Rosenfield,et al.  A coefficient of agreement as a measure of thematic classification accuracy. , 1986 .

[49]  C. Tucker,et al.  Tropical Deforestation and Habitat Fragmentation in the Amazon: Satellite Data from 1978 to 1988 , 1993, Science.

[50]  Russell G. Congalton,et al.  A practical look at the sources of confusion in error matrix generation , 1993 .

[51]  Siamak Khorram,et al.  Land-cover change detection enhanced with generalized linear models , 1999 .

[52]  Paul C. Van Deusen,et al.  Unbiased estimates of class proportions from thematic maps , 1996 .

[53]  T. Groeve Boundary Uncertainty Assessment from a Single Forest-Type Map , 2001 .

[54]  R. Leemans Changes in Land use and land cover: A global perspective , 1995 .

[55]  Alan H. Strahler,et al.  The IGBP DISCover confidence sites and the system for terrestrial ecosystem parameterization: tools , 1999 .

[56]  Ruth S. DeFries,et al.  Global continuous fields of vegetation characteristics: A linear mixture model applied to multi-year 8 km AVHRR data , 2000 .

[57]  J. Mas Monitoring land-cover changes: A comparison of change detection techniques , 1999 .

[58]  C. Woodcock,et al.  Theory and methods for accuracy assessment of thematic maps using fuzzy sets , 1994 .

[59]  P. C. Van Deusen Modified highest confidence first classification , 1995 .

[60]  Hugh G. Lewis,et al.  Appropriate strategies for mapping land cover from satellite imagery , 1999 .

[61]  D. B. Morrison,et al.  Machine processing of remotely sensed data : with special emphasis on natural resources evaluation : ninth international symposium, June 21-23, 1983, Purdue University, Laboratory for Applications of Remote Sensing, West Lafayette, Indiana , 1983 .

[62]  Niall M. Adams,et al.  Comparing classifiers when the misallocation costs are uncertain , 1999, Pattern Recognit..

[63]  Stephen V. Stehman,et al.  Selecting and interpreting measures of thematic classification accuracy , 1997 .

[64]  P. Vitousek Beyond Global Warming: Ecology and Global Change , 1994 .

[65]  F. Maselli,et al.  Use of probability entropy for the estimation and graphical representation of the accuracy of maximum likelihood classifications , 1994 .

[66]  Benoit Thierry,et al.  An Uncertainty-Based Method of Photointerpretation , 2001 .

[67]  Stephen V. Stehman,et al.  Use of auxiliary data to improve the precision of estimators of thematic map accuracy , 1996 .

[68]  Joel D. Schlagel,et al.  A GIS-based statistical method to analyse spatial change , 1996 .

[69]  A. Strahler,et al.  Application of the MODIS global supervised classification model to vegetation and land cover mapping of Central America , 2000 .

[70]  D. Richard Cutler,et al.  Assessing map accuracy in a remotely sensed, ecoregion-scale cover map , 1998 .

[71]  C. Corves,et al.  Mapping the reliability of satellite-derived landcover maps—an example from the Central Brazilian Amazon Basin , 1994 .

[72]  Russell G. Congalton,et al.  A review of assessing the accuracy of classifications of remotely sensed data , 1991 .

[73]  Russell G. Congalton,et al.  AN ASSESSMENT OF REFERENCE DATA VARIABILITY USING A "VIRTUAL FIELD REFERENCE DATABASE" , 2001 .

[74]  P. Curran,et al.  Environmental Remote Sensing From Regional to Global Scales , 1995 .

[75]  F. Chapin,et al.  Consequences of changing biodiversity , 2000, Nature.

[76]  Giles M. Foody,et al.  Mapping Land Cover from Remotely Sensed Data with a Softened Feedforward Neural Network Classification , 2000, J. Intell. Robotic Syst..

[77]  Stephen V. Stehman,et al.  Design and Analysis for Thematic Map Accuracy Assessment: Fundamental Principles , 1998 .

[78]  R. Colwell Remote sensing of the environment , 1980, Nature.

[79]  Daniel A. Griffith,et al.  Error Propagation Modelling in Raster GIS: Overlay Operations , 1998, Int. J. Geogr. Inf. Sci..

[80]  Ursula C. Benz,et al.  Measures of classification accuracy based on fuzzy similarity , 2000, IEEE Trans. Geosci. Remote. Sens..

[81]  J. Townshend,et al.  Global land cover classifications at 8 km spatial resolution: The use of training data derived from Landsat imagery in decision tree classifiers , 1998 .

[82]  A. M. Hay,et al.  The derivation of global estimates from a confusion matrix , 1988 .

[83]  I. Douglas,et al.  Hydrological investigations of forest disturbance and land cover impacts in South-East Asia: a review. , 1999, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[84]  S. Dicks,et al.  Evaluation of thematic map accuracy in a land-use and land-cover mapping program , 1990 .

[85]  P. Gong,et al.  The use of structural information for improving land-cover classification accuracies at the rural-urban fringe. , 1990 .

[86]  J. Scepan,et al.  Thematic validation of high-resolution Global Land-Cover Data sets , 1999 .

[87]  Giles M. Foody,et al.  The effects of viewing geometry on image classification , 1988 .

[88]  Pol Coppin,et al.  Satellite inventory of Minnesota forest resources , 1994 .

[89]  David L.B. Jupp,et al.  The stability of global estimates from confusion matrices , 1989 .

[90]  Erik Næsset,et al.  Use of the Weighted Kappa Coefficient in Classification Error Assessment of Thematic Maps , 1996, Int. J. Geogr. Inf. Sci..

[91]  Pascal Matsakis,et al.  Evaluation of Fuzzy Partitions , 2000 .

[92]  David P. Roy,et al.  The impact of misregistration upon composited wide field of view satellite data and implications for change detection , 2000, IEEE Trans. Geosci. Remote. Sens..

[93]  Ludovic Roux,et al.  Characterisation of ecotones using membership degrees computed with a fuzzy classifier , 1998 .

[94]  J. C. Taylor,et al.  Mapping National Park landscape from ground, air and space , 2000 .

[95]  Raymond L. Czaplewski,et al.  Misclassification Bias in Areal Estimates , 1992 .

[96]  Roland L. Redmond,et al.  Estimation and Mapping of Misclassification Probabilities for Thematic Land Cover Maps , 1998 .

[97]  Sucharita Gopal,et al.  Fuzzy set theory and thematic maps: accuracy assessment and area estimation , 2000, Int. J. Geogr. Inf. Sci..

[98]  Paul V. Bolstad,et al.  Coordinating methodologies for scaling landcover classifications from site-specific to global: Steps toward validating global map products , 1999 .

[99]  R. Lunetta,et al.  Remote Sensing Change Detection: Environmental Monitoring Methods and Applications , 1999 .

[100]  Peter M. Atkinson,et al.  Optimal ground-based sampling for remote sensing investigations: estimating the regional mean , 1991 .

[101]  Eric F. Lambin,et al.  Land-cover changes in sub-saharan Africa (1982–1991): Application of a change index based on remotely sensed surface temperature and vegetation indices at a continental scale , 1997 .

[102]  William E. Strawderman,et al.  Assessing classification probabilities for thematic maps. , 1993 .

[103]  D. W. Mooneyhan,et al.  Of maps and myths , 1994 .

[104]  Kurt H. Riitters,et al.  Sensitivity of selected landscape pattern metrics to land-cover misclassification and differences in land-cover composition , 1997 .

[105]  Thomas J. Stohlgren,et al.  Assessing the accuracy of Landsat Thematic Mapper classification using double sampling , 1998 .

[106]  R. Mccoy,et al.  Mapping Desert Shrub Rangeland Using Spectral Unmixing and Modeling Spectral Mixtures with TM Data , 1997 .

[107]  Philip A. Townsend,et al.  A Quantitative Fuzzy Approach to Assess Mapped Vegetation Classifications for Ecological Applications , 2000 .

[108]  Sietse O. Los,et al.  Implications of land-cover misclassification for parameter estimates in global land-surface models: An example from the simple biosphere model (SiB2) , 1999 .

[109]  John Szajgin,et al.  Landsat classification accuracy assessment procedures , 1982 .

[110]  J. Campbell Introduction to remote sensing , 1987 .

[111]  Thomas R. Loveland,et al.  The global land-cover characteristics database : The users' perspective , 1999 .

[112]  Gregory Husak,et al.  Landsat Thematic Mapper registration accuracy and its effects on the IGBP validation , 1999 .

[113]  Zhenkui Ma,et al.  Tau coefficients for accuracy assessment of classification of remote sensing data , 1995 .

[114]  Stephen V. Stehman,et al.  Basic probability sampling designs for thematic map accuracy assessment , 1999 .

[115]  Trevor Louis Charles Griffin Measurements from maps , 1990 .

[116]  A. Hay Sampling designs to test land-use map accuracy , 1979 .

[117]  Thomas R. Loveland,et al.  The IGBP-DIS global 1 km land cover data set , 1997 .

[118]  Pol Coppin,et al.  Spatial characterisation of uncertainty in forest change detection , 2000 .

[119]  D. Yuan A SIMULATION COMPARISON OF THREE MARGINAL AREA ESTIMATORS FOR IMAGE CLASSIFICATION , 1997 .

[120]  Elisabetta Binaghi,et al.  A fuzzy set-based accuracy assessment of soft classification , 1999, Pattern Recognit. Lett..

[121]  Giles M. Foody,et al.  Assessing the ground data requirements for regional scale remote sensing of tropical forest biophysical properties , 2000 .

[122]  S. Stehman Estimating the Kappa Coefficient and its Variance under Stratified Random Sampling , 1996 .

[123]  Limin Yang,et al.  Development of a global land cover characteristics database and IGBP DISCover from 1 km AVHRR data , 2000 .

[124]  F. Canters,et al.  Evaluating the uncertainty of area estimates derived from fuzzy land-cover classification , 1997 .

[125]  Russell G. Congalton,et al.  Mapping old growth forests on National Forest and Park Lands in the Pacific Northwest from remotely sensed data , 1993 .

[126]  Ola Ahlqvist,et al.  Rough classification and accuracy assessment , 2000, Int. J. Geogr. Inf. Sci..

[127]  H. Veregin Integration of simulation modeling and error propagation for the buffer operation in GIS , 1994 .

[128]  James R. Anderson,et al.  A land use and land cover classification system for use with remote sensor data , 1976 .

[129]  J. Townshend,et al.  Global land cover classi(cid:142) cation at 1 km spatial resolution using a classi(cid:142) cation tree approach , 2004 .

[130]  Stephen V. Stehman,et al.  Statistical Rigor and Practical Utility in Thematic Map Accuracy Assessment , 2001 .

[131]  Limin Yang,et al.  Accuracy assessment for the U.S. Geological Survey Regional Land-Cover Mapping Program: New York and New Jersey Region , 2000 .

[132]  Qiming Zhou,et al.  On the ground estimation of vegetation cover in Australian rangelands , 1998 .

[133]  S. V. Stehman,et al.  Comparing thematic maps based on map value , 1999 .

[134]  Michael F. Worboys,et al.  Imprecision in Finite Resolution Spatial Data , 1998, GeoInformatica.

[135]  G. Edwards,et al.  Modeling uncertainty in photointerpreted boundaries , 1996 .

[136]  Stan Openshaw,et al.  The truth about Ground Truth , 1997, Trans. GIS.

[137]  Alan H. Strahler,et al.  A note on procedures used for accuracy assessment in land cover maps derived from AVHRR data , 2000 .

[138]  John T. Finn,et al.  Use of the Average Mutual Information Index in Evaluating Classification Error and Consistency , 1993, Int. J. Geogr. Inf. Sci..

[139]  R. Lucas,et al.  Identifying terrestrial carbon sinks: Classification of successional stages in regenerating tropical forest from Landsat TM data , 1996 .

[140]  J. L. Smith,et al.  Using classification error matrices to improve the accuracy of weighted land-cover models , 1987 .

[141]  Giles M. Foody,et al.  Approaches for the production and evaluation of fuzzy land cover classifications from remotely-sensed data , 1996 .

[142]  J. Morisette,et al.  Accuracy Assessment Curves for Satellite-Based Change Detection , 2000 .

[143]  Lawrence C. Rowan,et al.  Remote mineralogic and lithologic mapping of the ice river alkaline complex , 1996 .

[144]  N. Campbell,et al.  Derivation and applications of probabilistic measures of class membership from the maximum-likelihood classification , 1992 .

[145]  Russell G. Congalton,et al.  Mapping and Monitoring Agricultural Crops and Other Land Cover in the Lower Colorado River Basin , 1998 .

[146]  C. Justice,et al.  Validating MODIS Terrestrial Ecology Products: Linking In Situ and Satellite Measurements , 1999 .

[147]  R. W. Fitzgerald,et al.  Assessing the classification accuracy of multisource remote sensing data , 1994 .

[148]  M. Abrams,et al.  Revised Mapping of Lava Flows on Mt. Etna, Sicily , 1995 .

[149]  G. Foody,et al.  A fuzzy classification of sub-urban land cover from remotely sensed imagery , 1998 .

[150]  John R. Jensen,et al.  Introductory Digital Image Processing: A Remote Sensing Perspective , 1986 .

[151]  R. M. Lark,et al.  Components of accuracy of maps with special reference to discriminant analysis on remote sensor data , 1995 .

[152]  Russell G. Congalton,et al.  Assessing the accuracy of remotely sensed data : principles and practices , 1998 .

[153]  Eric F. Lambin,et al.  Modelling and monitoring land-cover change processes in tropical regions , 1997 .