Impact of raw material surface oxide removal on dual band infrared optical properties of As2Se3 chalcogenide glass

The manufacturing of low loss chalcogenide glasses (ChGs) for optoelectronic applications is ultimately defined by the concentration of impurities present in starting materials or imparted via processing. We describe a rapid method for purifying metallic starting materials in As2Se3 glass where oxide reduction is correlated to optical and physical properties. Specifically, As-O reduction enhances the glass’ dual-band optical transparency proportional to the extent (13-fold reduction) of oxide reduction, and is accompanied by a change in density and hardness associated with changes in matrix bonding. A significant modification of the glass’ index and LWIR Abbe number is reported highlighting the significant impact purification has on material dispersion control required in optical designs.

[1]  D. Ležal,et al.  Oxygen impurities and defects in chalcogenide glasses , 1970 .

[2]  T. F. Deutsch,et al.  Absorption coefficient of infrared laser window materials , 1973 .

[3]  P. B. Macedo,et al.  Intrinsic and impurity infrared absorption in As2Se3 glass , 1975 .

[4]  B. Tatian,et al.  Fitting refractive-index data with the Sellmeier dispersion formula. , 1984, Applied optics.

[5]  Toshio Katsuyama,et al.  Fabrication of high‐purity chalcogenide glasses by chemical vapor deposition , 1986 .

[6]  G. Sigel,et al.  Remote fiber-optic chemical sensing using evanescent-wave interactions in chalcogenide glass fibers. , 1991, Applied optics.

[7]  Ishwar D. Aggarwal,et al.  Fabrication of low-loss IR-transmitting Ge/sub 30/As/sub 10/Se/sub 30/Te/sub 30/ glass fibers , 1994 .

[8]  M. Churbanov,et al.  High-purity chalcogenide glasses as materials for fiber optics , 1995 .

[9]  Alexis G. Clare,et al.  Laboratory preparation of highly pure As2Se3 glass , 1995 .

[10]  G. Ghosh,et al.  Sellmeier coefficients and dispersion of thermo-optic coefficients for some optical glasses. , 1997, Applied optics.

[11]  Ishwar D. Aggarwal,et al.  Development of chalcogenide glass fiber optics at NRL , 1997 .

[12]  Jasbinder S. Sanghera,et al.  Active and passive chalcogenide glass optical fibers for IR applications: a review , 1999 .

[13]  E. B. Kryukova,et al.  Effect of Oxygen Impurity on the Optical Transmission of As2Se3.4Glass , 2001 .

[14]  Jean-Luc Adam,et al.  Infrared fibers based on Te–As–Se glass system with low optical losses , 2004 .

[15]  E. B. Kryukova,et al.  Effects of oxygen and carbon impurities on the optical transmission of As2Se3 glass , 2005 .

[16]  E. M. Dianov,et al.  High-purity chalcogenide glasses for fiber optics , 2009 .

[17]  M. Churbanov Relevant problems of chemistry of high-purity substances , 2009 .

[18]  L. Brilland,et al.  Microstructured chalcogenide optical fibers from As(2)S(3) glass: towards new IR broadband sources. , 2010, Optics express.

[19]  Yu-ran Luo Bond dissociation energies , 2010 .

[20]  J. D. Musgraves,et al.  Measurement of the refractive index dispersion of As2Se3 bulk glass and thin films prior to and after laser irradiation and annealing using prism coupling in the near- and mid-infrared spectral range. , 2011, The Review of scientific instruments.

[21]  Daniel W. Hewak,et al.  Measurement of chalcogenide glass optical dispersion using a mid-infrared prism coupler , 2011, Defense + Commercial Sensing.

[22]  Jean-Luc Adam,et al.  Fabrication of highly homogeneous As2Se3 glass under argon flow , 2011 .

[23]  E. M. Dianov,et al.  Recent advances in preparation of high-purity glasses based on arsenic chalcogenides for fiber optics , 2011 .

[24]  Y. Messaddeq,et al.  Mid-infrared chalcogenide glass Raman fiber laser. , 2013, Optics letters.

[25]  Vladimir Shiryaev,et al.  Trends and prospects for development of chalcogenide fibers for mid-infrared transmission , 2013 .

[26]  J. D. Musgraves,et al.  A Comparative Study of Purification Routes for As2Se3 Chalcogenide Glass , 2013 .

[27]  J. D. Musgraves,et al.  Correlation between native As2Se3 preform purity and glass optical fiber mechanical strength , 2014 .

[28]  Olivier Sire,et al.  Chalcogenide optical fibers for mid-infrared sensing , 2014 .

[29]  K. Richardson,et al.  Thermophysical properties and conduction mechanisms in AsxSe1−x chalcogenide glasses ranging from x = 0.2 to 0.5 , 2016 .

[30]  Ole Bang,et al.  Multimode supercontinuum generation in chalcogenide glass fibres. , 2016, Optics express.

[31]  Benn Gleason,et al.  Refractive Index and Thermo‐Optic Coefficients of Ge‐As‐Se Chalcogenide Glasses , 2016 .

[32]  Vladimir Shiryaev,et al.  Recent advances in preparation of high-purity chalcogenide glasses for mid-IR photonics , 2017 .

[33]  Kathleen Richardson,et al.  New Candidate Multicomponent Chalcogenide Glasses for Supercontinuum Generation , 2018, Applied Sciences.

[34]  M. Churbanov,et al.  Arsenic-sulfide glasses with low content of hydrogen impurity for fiber optics , 2018 .

[35]  Duncan T. Moore,et al.  Melt property variation in GeSe 2 ‐As 2 Se 3 ‐PbSe glass ceramics for infrared gradient refractive index (GRIN) applications , 2018, International Journal of Applied Glass Science.

[36]  E. S. Lee,et al.  Unravelling interrelations between chemical composition and refractive index dispersion of infrared-transmitting chalcogenide glasses , 2018, Scientific Reports.

[37]  V. Vorotyntsev,et al.  Plasma-Chemistry of Arsenic Selenide Films: Relationship Between Film Properties and Plasma Power , 2019, Plasma Chemistry and Plasma Processing.

[38]  Anupama Yadav,et al.  Monolithic Chalcogenide Optical Nanocomposites Enable Infrared System Innovation: Gradient Refractive Index Optics , 2020 .

[39]  V. Plotnichenko,et al.  The problems of optical loss reduction in arsenic sulfide glass IR fibers , 2020 .