RBF neural network based second-order sliding mode guidance for Mars entry under uncertainties

Abstract There are usually larger uncertainties in the atmosphere density of Mars and the aerodynamic parameters of entry vehicles, which inevitably degrades the performance of entry guidance and control algorithms. This paper studies the robust Mars atmospheric entry guidance design based on the radial basis function neural network (RBF-NN) and second-order sliding mode control (SOSMC). First, second-order sliding mode guidance (SOSMG) law is developed to robustly follow the pre-designed nominal trajectory under larger uncertainties and effectively reduce the longitudinal error. Then, the RBF neural network is included into the second-order sliding surface guidance law to online approximate the bounded uncertain terms and further improve the guidance accuracy. Finally, the effectiveness of the guidance algorithm proposed in this paper is confirmed by Monte Carlo simulations.

[1]  Wei-Min Lu,et al.  Guidance and Control for Mars Atmospheric Entry: Adaptivity and Robustness , 1997 .

[2]  Xiuqiang Jiang,et al.  Review and prospect of guidance and control for Mars atmospheric entry , 2014 .

[3]  Joel Benito Manrique Advances in spacecraft atmospheric entry guidance , 2010 .

[4]  Jarret M. Lafleur,et al.  Angle of Attack Modulation for Mars Entry Terminal State Optimization , 2009 .

[5]  Yuri B. Shtessel,et al.  Smooth second-order sliding modes: Missile guidance application , 2007, Autom..

[6]  Edward C. Wong,et al.  The Development of the MSL Guidance, Navigation, and Control System for Entry, Descent, and Landing , 2013 .

[7]  Yang Cheng,et al.  Toward improved landing precision on Mars , 2011, 2011 Aerospace Conference.

[8]  Roberto Furfaro,et al.  Asteroid Precision Landing via Multiple Sliding Surfaces Guidance Techniques , 2013 .

[9]  R. Manning,et al.  Mars Exploration Entry, Descent, and Landing Challenges , 2007 .

[10]  Alexander I. Kozynchenko,et al.  Analysis of predictive entry guidance for a Mars lander under high model uncertainties , 2011 .

[11]  B. Acikmese,et al.  Improving the landing precision of an MSL-class vehicle , 2012, 2012 IEEE Aerospace Conference.

[12]  Kuang-Yang Tu,et al.  Drag-Based Predictive Tracking Guidance for Mars Precision Landing , 1998 .

[13]  Shuang Li,et al.  Neural network-based sliding mode variable structure control for Mars entry , 2012 .

[14]  Ali Zolghadri,et al.  Coupled linear parameter varying and flatness-based approach for space re-entry vehicles guidance , 2009 .

[15]  Roberto Furfaro,et al.  Mars Atmospheric Entry Guidance via Multiple Sliding Surface Guidance for Reference Trajectory Tracking , 2012 .

[16]  Christopher D. Karlgaard,et al.  Assessment of the Reconstructed Aerodynamics of the Mars Science Laboratory Entry Vehicle , 2014 .

[17]  Geethu Lisba Jacob,et al.  Mars Entry Mission Bank Profile Optimization , 2014 .

[18]  Gavin F. Mendeck,et al.  Entry Guidance for the 2011 Mars Science Laboratory Mission , 2011 .

[19]  S. N. Balakrishnan,et al.  Reentry Terminal Guidance Through Sliding Mode Control , 2010 .

[20]  Sanjay E. Talole,et al.  Sliding Mode Observer for Drag Tracking in Entry Guidance , 2007 .

[21]  Jooyoung Park,et al.  Universal Approximation Using Radial-Basis-Function Networks , 1991, Neural Computation.

[22]  R. Prakash,et al.  Mars Science Laboratory entry guidance improvements study for the Mars 2018 mission , 2012, 2012 IEEE Aerospace Conference.

[23]  Ping Lu,et al.  Dynamic Lateral Entry Guidance Logic , 2004 .