The atomic structure of a clean (010) surface of the ordered binary alloy TiAl (with tetragonal bulk structure of the CuAu I type) is studied with quantitative low-energy electron diffraction (QLEED). Two different surface phases are found depending on the preparation procedure. After a cleaning step in vacuo by means of Ar-ion bombardments, anneals at 750−850°C produce a 2×1 surface and anneals at about 900° C produce a 1×1 surface. A QLEED intensity analysis of the 1×1 structure reveals the occurrence of chemical reconstruction, whereby the Ti atoms in the first layer exchange places with the Al atoms in the second layer. Thus, while any bulk (010) plane contains 50% Al and 50% Ti, the top atomic layer of a (010) surface contains 100% Al and the second atomic layer contains 100% Ti. Both layers are slightly buckled and the first interlayer distance is compressed about 7.1% while the second interlayer spacing is expanded about 7.4% with respect to the bulk value.