Poly(vinylidene fluoride)-based, co-polymer separator electrolyte membranes for lithium-ion battery systems

In the present paper we report and discuss the physicochemical properties of novel electrolyte membranes, based on poly(vinylidenefluoride-co-trifluoroethylene), PVdF-TrFE, and poly(vinylidenefluoride-co-hexafluoropropylene), PVdF-HFP, co-polymer hosts and the PVdF-TrFE/poly(ethylene oxide (PEO) blend as separators for lithium battery systems. The results have shown that the examined separator membranes, particularly those based on the PVdF co-polymers, are able to uptake large liquid amounts leading to high ionic conductivity values. Tests performed on Li/LiFePO4 and Li/Sn–C cells have revealed very good cycling performance even at high current rates and 100% of DOD, approaching the results achieved in liquid electrolytes. A capacity fading lower than 0.002% per cycle was observed. Particularly, the Li/LiFePO4 cathode cells have exhibited excellent rate capability, being still able to deliver at 2C above 89% of the capacity discharged at 0.1C. These results, in conjunction with the about 100% coulombic efficiency, suggest very good electrolyte/electrode compatibility, which results from the high purity and stability of the electrolyte and electrode materials and the cell manufacturing.

[1]  Y. W. Kim,et al.  Lithium ion conduction in PEO–salt electrolytes gelled with PAN , 1998 .

[2]  Pierre Millet,et al.  Preparation of solid polymer electrolyte composites: investigation of the precipitation process , 1995 .

[3]  Kang Xu,et al.  Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. , 2004, Chemical reviews.

[4]  S. Passerini,et al.  Novel polymeric systems for lithium ion batteries gel electrolytes: II. Hybrid cross-linked poly(fluorosilicone-ethyleneoxide) , 2005 .

[5]  P. Balbuena,et al.  Lithium-ion batteries : solid-electrolyte interphase , 2004 .

[6]  S. Lanceros‐Méndez,et al.  Tailoring porous structure of ferroelectric poly(vinylidene fluoride-trifluoroethylene) by controlling solvent/polymer ratio and solvent evaporation rate , 2011 .

[7]  S. Lanceros‐Méndez,et al.  Battery separators based on vinylidene fluoride (VDF) polymers and copolymers for lithium ion battery applications , 2013 .

[8]  B. Scrosati,et al.  Mechanically milled, nanostructured SnC composite anode for lithium ion battery , 2013 .

[9]  Bruno Scrosati,et al.  Recent advances in lithium ion battery materials , 2000 .

[10]  B. Scrosati,et al.  A new concept for the formation of homogeneous, poly (ethylene oxide) based, gel-type polymer electrolyte , 2002 .

[11]  S. Lanceros‐Méndez,et al.  Effect of the microsctructure and lithium-ion content in poly[(vinylidene fluoride)-co-trifluoroethylene]/lithium perchlorate trihydrate composite membranes for battery applications , 2012 .

[12]  J. Liang,et al.  Functional Materials for Rechargeable Batteries , 2011, Advanced materials.

[13]  P. Bruce,et al.  Nanostructured materials for advanced energy conversion and storage devices , 2005, Nature materials.

[14]  Bernard A. Boukamp,et al.  A package for impedance/admittance data analysis , 1986 .

[15]  B. Scrosati,et al.  A poly(vinylidene fluoride)-based gel electrolyte membrane for lithium batteries , 1999 .

[16]  A. Stephan,et al.  Review on gel polymer electrolytes for lithium batteries , 2006 .

[17]  S. Lanceros‐Méndez,et al.  Poly[(vinylidene fluoride)-co-trifluoroethylene] Membranes Obtained by Isothermal Crystallization from Solution , 2010 .

[18]  G. Graff,et al.  Li-ion batteries from LiFePO4 cathode and anatase/graphene composite anode for stationary energy storage , 2010 .

[19]  S. Lanceros‐Méndez,et al.  Novel poly(vinylidene fluoride-trifluoroethylene)/poly(ethylene oxide) blends for battery separators in lithium-ion applications , 2013 .

[20]  S. Hirano,et al.  Ordered mesoporous Sn–C composite as an anode material for lithium ion batteries , 2011 .

[21]  Yongku Kang,et al.  Photocured PEO-based solid polymer electrolyte and its application to lithium-polymer batteries , 2001 .

[22]  B. Scrosati,et al.  Kinetics and stability of the lithium electrode in poly(methylmethacrylate)-based gel electrolytes , 1995 .

[23]  Doron Aurbach,et al.  Challenges in the development of advanced Li-ion batteries: a review , 2011 .

[24]  Chunsheng Wang,et al.  Uniform nano-Sn/C composite anodes for lithium ion batteries. , 2013, Nano letters.

[25]  F. Alloin,et al.  Plasticized microporous poly(vinylidene fluoride) separators for lithium-ion batteries. I. Swelling behavior of dense membranes with respect to a liquid electrolyte: Characterization of the swelling equilibrium , 2004 .

[26]  Tatsuo Nakamura,et al.  Battery performances and thermal stability of polyacrylonitrile nano-fiber-based nonwoven separators for Li-ion battery , 2008 .

[27]  B. Boukamp A Nonlinear Least Squares Fit procedure for analysis of immittance data of electrochemical systems , 1986 .

[28]  Y. Chung,et al.  Enhancement of Meltdown Temperature of the Polyethylene Lithium-Ion Battery Separator via Surface Coating with Polymers Having High Thermal Resistance , 2009 .

[29]  J. G. Rocha,et al.  Effect of degree of porosity on the properties of poly(vinylidene fluoride-trifluorethylene) for Li-ion battery separators , 2012 .

[30]  G. Pistoia,et al.  Lithium batteries : science and technology , 2003 .

[31]  F. Alloin,et al.  Plasticized microporous poly(vinylidene fluoride) separators for lithium‐ion batteries. III. Gel properties and irreversible modifications of poly(vinylidene fluoride) membranes under swelling in liquid electrolytes , 2004 .

[32]  Bruno Scrosati,et al.  Nanostructured Sn–C Composite as an Advanced Anode Material in High‐Performance Lithium‐Ion Batteries , 2007 .

[33]  M. Whittingham,et al.  Lithium batteries and cathode materials. , 2004, Chemical reviews.

[34]  Lixia Yuan,et al.  Development and challenges of LiFePO4 cathode material for lithium-ion batteries , 2011 .

[35]  S. Lanceros‐Méndez,et al.  Composition-dependent physical properties of poly[(vinylidene fluoride)-co-trifluoroethylene]–poly(ethylene oxide) blends , 2013, Journal of Materials Science.

[36]  Dong Ju Lee,et al.  A lithium ion battery using nanostructured Sn–C anode, LiFePO4 cathode and polyethylene oxide-based electrolyte , 2011 .

[37]  Jiangyu Li Exchange coupling in P(VDF-TrFE) copolymer based all-organic composites with giant electrostriction. , 2003, Physical review letters.

[38]  Bruno Scrosati,et al.  A high power Sn–C/C–LiFePO4 lithium ion battery , 2012 .

[39]  Min Yang,et al.  Membranes in Lithium Ion Batteries , 2012, Membranes.

[40]  Bruno Scrosati,et al.  Composite gel membranes: a new class of improved polymer electrolytes for lithium batteries , 2001 .

[41]  Sébastien Martinet,et al.  Macroporous poly(vinylidene fluoride) membrane as a separator for lithium-ion batteries with high charge rate capacity , 2009 .

[42]  H. Ahn,et al.  Mesoporous LiFePO4/C Nanocomposite Cathode Materials for High Power Lithium Ion Batteries with Superior Performance , 2010, Advanced materials.

[43]  Jianling Li,et al.  PVDF-HFP-based porous polymer electrolyte membranes for lithium-ion batteries , 2008 .

[44]  R. Hu,et al.  Enhancing the performance of Sn–C nanocomposite as lithium ion anode by discharge plasma assisted milling , 2012 .

[45]  J. Howard,et al.  Characterization of microporous separators for lithium-ion batteries , 1999 .

[46]  中嶌 剛,et al.  Fluorinated materials for energy conversion , 2005 .

[47]  J. G. Rocha,et al.  Evaluation of the main processing parameters influencing the performance of poly(vinylidene fluoride–trifluoroethylene) lithium-ion battery separators , 2013, Journal of Solid State Electrochemistry.

[48]  J. Besenhard,et al.  Handbook of Battery Materials , 1998 .

[49]  B. Scrosati,et al.  Lithium batteries: Status, prospects and future , 2010 .

[50]  K. Abraham,et al.  Studies of some poly(vinylidene fluoride) electrolytes , 1997 .