Machine learning of noise-resilient quantum circuits

Noise mitigation and reduction will be crucial for obtaining useful answers from near-term quantum computers. In this work, we present a general framework based on machine learning for reducing the impact of quantum hardware noise on quantum circuits. Our method, called noise-aware circuit learning (NACL), applies to circuits designed to compute a unitary transformation, prepare a set of quantum states, or estimate an observable of a many-qubit state. Given a task and a device model that captures information about the noise and connectivity of qubits in a device, NACL outputs an optimized circuit to accomplish this task in the presence of noise. It does so by minimizing a task-specific cost function over circuit depths and circuit structures. To demonstrate NACL, we construct circuits resilient to a fine-grained noise model derived from gate set tomography on a superconducting-circuit quantum device, for applications including quantum state overlap, quantum Fourier transform, and W-state preparation.

[1]  Patrick J. Coles,et al.  Variational Quantum Linear Solver. , 2020 .

[2]  Ryan LaRose,et al.  Variational Quantum Linear Solver: A Hybrid Algorithm for Linear Systems , 2019, 1909.05820.

[3]  Patrick J. Coles,et al.  Variational fast forwarding for quantum simulation beyond the coherence time , 2019, 1910.04292.

[4]  Kristan Temme,et al.  Error mitigation extends the computational reach of a noisy quantum processor , 2019, Nature.

[5]  Alán Aspuru-Guzik,et al.  A variational eigenvalue solver on a photonic quantum processor , 2013, Nature Communications.

[6]  Moinuddin K. Qureshi,et al.  Not All Qubits Are Created Equal: A Case for Variability-Aware Policies for NISQ-Era Quantum Computers , 2018, ASPLOS.

[7]  Alán Aspuru-Guzik,et al.  Quantum autoencoders for efficient compression of quantum data , 2016, 1612.02806.

[8]  Mauricio Gutierrez,et al.  Simulating the performance of a distance-3 surface code in a linear ion trap , 2017, 1710.01378.

[9]  Tyson Jones,et al.  Quantum compilation and circuit optimisation via energy dissipation , 2018 .

[10]  Ross Duncan,et al.  t|ket⟩: a retargetable compiler for NISQ devices , 2020, Quantum Science and Technology.

[11]  Margaret Martonosi,et al.  Formal Constraint-based Compilation for Noisy Intermediate-Scale Quantum Systems , 2019, Microprocess. Microsystems.

[12]  Erik Nielsen,et al.  Detecting crosstalk errors in quantum information processors. , 2019 .

[13]  Erik Nielsen,et al.  Probing quantum processor performance with pyGSTi , 2020, Quantum Science and Technology.

[14]  Ryan LaRose,et al.  Quantum-assisted quantum compiling , 2018, Quantum.

[15]  Dmitri Maslov,et al.  Basic circuit compilation techniques for an ion-trap quantum machine , 2016, ArXiv.

[16]  Kristan Temme,et al.  Error Mitigation for Short-Depth Quantum Circuits. , 2016, Physical review letters.

[17]  Nicolas Macris,et al.  Efficient Quantum Algorithms for GHZ and W States, and Implementation on the IBM Quantum Computer , 2018, Advanced Quantum Technologies.

[18]  Patrick J. Coles,et al.  Learning the quantum algorithm for state overlap , 2018, New Journal of Physics.

[19]  Alán Aspuru-Guzik,et al.  The theory of variational hybrid quantum-classical algorithms , 2015, 1509.04279.

[20]  Ying Li,et al.  Efficient Variational Quantum Simulator Incorporating Active Error Minimization , 2016, 1611.09301.

[21]  Patrick J. Coles,et al.  Error mitigation with Clifford quantum-circuit data , 2020, Quantum.

[22]  Patrick J. Coles,et al.  Variational quantum state diagonalization , 2018, npj Quantum Information.

[23]  Patrick J. Coles,et al.  Variational consistent histories as a hybrid algorithm for quantum foundations , 2018, Nature Communications.

[24]  Robert R. Tucci Qubiter Algorithm Modification, Expressing Unstructured Unitary Matrices with Fewer CNOTs , 2004, quant-ph/0411027.

[25]  E. Farhi,et al.  A Quantum Approximate Optimization Algorithm , 2014, 1411.4028.

[26]  Peter Maunz,et al.  Demonstration of qubit operations below a rigorous fault tolerance threshold with gate set tomography , 2016, Nature Communications.

[27]  Joel J. Wallman,et al.  Bounding quantum gate error rate based on reported average fidelity , 2015, 1501.04932.

[28]  M. Nielsen A simple formula for the average gate fidelity of a quantum dynamical operation [rapid communication] , 2002, quant-ph/0205035.

[29]  M. Horodecki,et al.  General teleportation channel, singlet fraction and quasi-distillation , 1998, quant-ph/9807091.

[30]  Patrick J. Coles,et al.  Variational Quantum State Eigensolver , 2020, 2004.01372.

[31]  Simon C. Benjamin,et al.  Learning-based quantum error mitigation , 2020 .

[32]  Schumacher,et al.  Sending entanglement through noisy quantum channels. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[33]  Jeremy Frank,et al.  Compiling quantum circuits to realistic hardware architectures using temporal planners , 2017, ArXiv.

[34]  L. C. G. Govia,et al.  Bootstrapping quantum process tomography via a perturbative ansatz , 2019, Nature Communications.

[35]  Robert Gardner,et al.  Quantum generalisation of feedforward neural networks , 2016, npj Quantum Information.

[36]  Keisuke Fujii,et al.  Quantum circuit learning , 2018, Physical Review A.

[37]  Andrew W. Cross,et al.  Open Quantum Assembly Language , 2017, 1707.03429.

[38]  Kunal Sharma,et al.  Noise resilience of variational quantum compiling , 2019, New Journal of Physics.

[39]  Patrick J. Coles,et al.  Variational Quantum Fidelity Estimation , 2019, Quantum.

[40]  Erik Nielsen,et al.  Detecting, tracking, and eliminating drift in quantum information processors , 2019, 1907.13608.

[41]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[42]  Alexandru Gheorghiu,et al.  A deep learning model for noise prediction on near-term quantum devices , 2020, 2005.10811.

[43]  J. Joo,et al.  Quantum teleportation via a W state , 2003, quant-ph/0306175.

[44]  Margaret Martonosi,et al.  Noise-Adaptive Compiler Mappings for Noisy Intermediate-Scale Quantum Computers , 2019, ASPLOS.

[45]  Margaret Martonosi,et al.  ScaffCC: a framework for compilation and analysis of quantum computing programs , 2014, Conf. Computing Frontiers.