Characterising nested database dependencies by fragments of propositional logic

Abstract We extend the earlier results on the equivalence between the Boolean and the multivalued dependencies in relational databases and fragments of the Boolean propositional logic. It is shown that these equivalences are still valid for the databases that store complex data elements obtained from the recursive nesting of record, list, set and multiset constructors. The major proof argument utilises properties of Brouwerian algebras. The equivalences have several consequences. Firstly, they provide new insights into databases that are not in first normal form. Secondly, they characterise the implication of data dependencies in nested databases in purely logical terms. The database designer can take advantage of these equivalences to reduce database design problems to well-studied problems in Boolean propositional logic. Furthermore, relational database design solutions can be reused to solve problems for nested databases.

[1]  Dan Suciu,et al.  On database theory and XML , 2001, SGMD.

[2]  Hazel Perfect COMBINATORICS OF FINITE SETS (Oxford Science Publications) , 1988 .

[3]  Ronald Fagin,et al.  An Equivalence Between Relational Database Dependencies and a Fragment of Propositional Logic , 1981, JACM.

[4]  Yehoshua Sagiv An Algorithm for Inferring Multivalued Dependencies with an Application to Propositional Logic , 1980, JACM.

[5]  Catriel Beeri,et al.  On the menbership problem for functional and multivalued dependencies in relational databases , 1980, TODS.

[6]  Ronald Fagin,et al.  Multivalued dependencies and a new normal form for relational databases , 1977, TODS.

[7]  Peter P. Chen The Entity-Relationship Model: Towards a unified view of Data , 1976 .

[8]  Douglas Stott Parker,et al.  Algorithmic Applications For A New Result On Multivalued Dependencies , 1979, Fifth International Conference on Very Large Data Bases, 1979..

[9]  Peter P. Chen The entity-relationship model: toward a unified view of data , 1975, VLDB '75.

[10]  C. M. Sperberg-McQueen,et al.  Extensible markup language , 1997 .

[11]  BeeriCatriel On the menbership problem for functional and multivalued dependencies in relational databases , 1980 .

[12]  A BernsteinPhilip,et al.  Computational problems related to the design of normal form relational schemas , 1979 .

[13]  Philip A. Bernstein,et al.  Computational problems related to the design of normal form relational schemas , 1979, TODS.

[14]  Roger King,et al.  Semantic database modeling: survey, applications, and research issues , 1987, CSUR.

[15]  Bernhard Thalheim,et al.  Fundamental Concepts of Object Oriented Databases , 1993, Acta Cybern..

[16]  S. Shelah,et al.  Annals of Pure and Applied Logic , 1991 .

[17]  徳山 豪,et al.  Matrix Rounding under the L_p-Discrepancy Measure and Its Application to Digital Halftoning , 2002 .

[18]  David J. DeWitt,et al.  The Object-Oriented Database System Manifesto , 1994, Building an Object-Oriented Database System, The Story of O2.

[19]  Sven Hartmann,et al.  Deciding implication for functional dependencies in complex-value databases , 2006, Theor. Comput. Sci..

[20]  A. Tarski,et al.  On Closed Elements in Closure Algebras , 1946 .

[21]  Jeffrey D. Ullman,et al.  Principles of Database Systems , 1980 .

[22]  Jinyan Li,et al.  Bioinformatics Adventures in Database Research , 2003, ICDT.

[23]  Klaus-Dieter Schewe,et al.  Functional and multivalued dependencies in nested databases generated by record and list constructor , 2006, Annals of Mathematics and Artificial Intelligence.

[24]  Claude Delobel,et al.  Relational database systems , 1985 .

[25]  Bernhard Thalheim,et al.  Entity-relationship modeling - foundations of database technology , 2010 .

[26]  Dan Suciu,et al.  Data on the Web: From Relations to Semistructured Data and XML , 1999 .

[27]  Herbert B. Enderton,et al.  A mathematical introduction to logic , 1972 .

[28]  Klaus-Dieter Schewe,et al.  Axiomatisations of functional dependencies in the presence of records, lists, sets and multisets , 2006, Theor. Comput. Sci..

[29]  Peer Kr A Computational Biology Database Digest: Data, Data Analysis, and Data Management , 2003 .

[30]  Serge Abiteboul,et al.  Foundations of Databases , 1994 .

[31]  Zvi Galil,et al.  An Almost Linear-Time Algorithm for Computing a Dependency Basis in a Relational Database , 1982, JACM.

[32]  Mark Levene,et al.  The Nested Universal Relation Database Model , 1992, Lecture Notes in Computer Science.

[33]  Ronald Fagin,et al.  Functional Dependencies in a Relational Data Base and Propositional Logic , 1977, IBM J. Res. Dev..

[34]  Joachim Biskup,et al.  Achievements of Relational Database Schema Design Theory Revisited , 1995, Semantics in Databases.

[35]  Claude Delobel,et al.  Normalization and hierarchical dependencies in the relational data model , 1978, TODS.

[36]  Miron Livny,et al.  The Design and Implementation of a Sequence Database System , 1996, VLDB.

[37]  Catriel Beeri,et al.  A Formal Approach to Object-Oriented Databases , 1990, Data Knowl. Eng..

[38]  Marc Gyssens,et al.  The Structure of the Relational Database Model , 1989, EATCS Monographs on Theoretical Computer Science.

[39]  E. F. CODD,et al.  A relational model of data for large shared data banks , 1970, CACM.

[40]  Victor Vianu,et al.  A Web Odyssey: from Codd to XML , 2001, PODS.

[41]  Peer Kröger,et al.  A Computational Biology Database Digest: Data, Data Analysis, and Data Management , 2004, Distributed and Parallel Databases.

[42]  I. Anderson Combinatorics of Finite Sets , 1987 .