Invited review: Physics potential of the ICAL detector at the India-based Neutrino Observatory (INO)
暂无分享,去创建一个
V. S. Subrahmanyam | P. Behera | J. Singh | V. Bhatnagar | B. Choudhary | Ashok Kumar | M. Naimuddin | A. Mohanty | L. Pant | G. Majumder | N. Mondal | Sudeshna Banerjee | N. Sinha | S. Chattopadhyay | Sanjeev Kumar | N. Dash | J. Libby | H. B. Ravikumar | N. Majumdar | S. Mukhopadhyay | S. Bhattacharya | M. Salim | A. Jash | R. Hasan | B. Satyanarayana | S. Saha | G. Gangopadhyay | C. D. Ravikumar | Animesh Chatterjee | S. Biswas | Y. Viyogi | S. Bose | A. Raychaudhuri | R. Gandhi | A. Redij | T. Ghosh | A. Dighe | D. Kaur | S. Krishnaveni | A. Gaur | V. Chandratre | V. Datar | M. Athar | S. Choubey | S. Goswami | P. Mehta | J. Shahi | S. Sankar | S. Behera | K. Kar | W. Bari | J. Singh | M. Ghosh | T. Thakore | S. Lakshmi | D. Majumdar | S. Mahapatra | C. Ranganathaiah | P. Ghoshal | B. S. Acharya | S. Agarwalla | Sushant K. Raut | M. M. Devi | R. Kanishka | G. Rajasekaran | D. Samuel | S. Singh | K. Bhattacharya | D. Indumathi | A. Ajmi | A. Ghosal | R. Ganai | K. Meghna | D. Tiwari | A. Kumar | S. Dasgupta | S. Pal | V. Singh | Aleena Chacko | Chandan Gupta | A. Ghosh | K. Raveendrababu | A. Vinod Kumar | A. Khatun | Shakeel Ahmed | K. R. Rebin | M. V. N Murthy | M.A.S. Malik | S. S. R Inbanathan | Sadiq Jafer | V. K. S Kashyap | Venktesh Singh | Ambar Ghosal | S. Banerjee | V. Bhatnagar
[1] S. Bheesette. Design and Characterisation Studies of Resistive Plate Chambers , 2016 .
[2] A. Palazzo,et al. Neutrino masses and mixings: Status of known and unknown 3ν parameters , 2016, 1601.07777.
[3] R. Hatcher,et al. First measurement of muon-neutrino disappearance in NOvA , 2016, 1601.05037.
[4] A. Aurisano,et al. First Measurement of Electron Neutrino Appearance in NOvA. , 2016, Physical review letters.
[5] T. Schwetz,et al. Global Analyses of Neutrino Oscillation Experiments , 2015, 1512.06856.
[6] R.Gill,et al. Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE) Conceptual Design Report Volume 2: The Physics Program for DUNE at LBNF , 2015, 1512.06148.
[7] Gobinda Majumder,et al. Sensitivity of the INO-ICAL detector to magnetic monopoles☆ , 2015 .
[8] Vasudha Bhatnagar,et al. Simulations study of muon response in the peripheral regions of the Iron Calorimeter detector at the India-based Neutrino Observatory , 2015, 1503.03369.
[9] K. Kasahara,et al. Atmospheric neutrino flux calculation using the NRLMSISE-00 atmospheric model , 2015, 1502.03916.
[10] Soo-bong Kim,et al. New results from RENO and prospects with RENO-50 , 2014, 1412.2199.
[11] Arnab K. Pal,et al. Error propagation of the track model and track fitting strategy for the Iron CALorimeter detector in India-based neutrino observatory , 2014, Comput. Phys. Commun..
[12] J. P. Rodrigues,et al. Determining neutrino oscillation parameters from atmospheric muon neutrino disappearance with three years of IceCube DeepCore data , 2014, 1410.7227.
[13] G. Majumder,et al. Sensitivity for detection of decay of dark matter particle using ICAL at INO , 2014, 1410.5182.
[14] J. L. Raaf,et al. Test of Lorentz invariance with atmospheric neutrinos , 2014, 1410.4267.
[15] D. Choudhury,et al. Testing nonstandard neutrino matter interactions in atmospheric neutrino propagation , 2014, 1409.8472.
[16] M.Tada,et al. Neutrino oscillation physics potential of the T2K experiment , 2014, 1409.7469.
[17] T. Schwetz,et al. Updated fit to three neutrino mixing: status of leptonic CP violation , 2014, Journal of High Energy Physics.
[18] M. Naimuddin,et al. The sensitivity of the ICAL detector at India-based Neutrino Observatory to neutrino oscillation parameters , 2014, 1409.2231.
[19] S. Sarkar,et al. Big-Bang Nucleosynthesis , 2014, 1412.1408.
[20] A. Mohanty,et al. Simulation Studies for Electromagnetic Design of INO ICAL Magnet and Its Response to Muons , 2014, IEEE Transactions on Magnetics.
[21] A. Dighe,et al. Enhancing sensitivity to neutrino parameters at INO combining muon and hadron information , 2014, 1406.3689.
[22] J. Valle,et al. Neutrino oscillations refitted , 2014, 1405.7540.
[23] Vasudha Bhatnagar,et al. A simulations study of the muon response of the Iron Calorimeter detector at the India-based Neutrino Observatory , 2014, 1405.7243.
[24] M. Hartz,et al. Precise Measurement of the Neutrino Mixing Parameter \theta_{23} from Muon Neutrino Disappearance in an Off-axis Beam , 2014, 1403.1532.
[25] A. Aurisano,et al. Combined analysis of νμ disappearance and νμ→νe appearance in MINOS using accelerator and atmospheric neutrinos. , 2014, Physical review letters.
[26] Animesh Chatterjee,et al. Probing Lorentz and CPT violation in a magnetized iron detector using atmospheric neutrinos , 2014, 1402.6265.
[27] Yu-Feng Li. Overview of the Jiangmen Underground Neutrino Observatory (JUNO) , 2014, 1402.6143.
[28] U. Katz. The ORCA Option for KM3NeT , 2014, 1402.1022.
[29] S. Goswami,et al. Evidence for leptonic CP phase from NOνA, T2K and ICAL , 2014, Pramana.
[30] A. Dighe,et al. Hadron energy resolution as a function of iron plate thickness at ICAL , 2014 .
[31] Armenia,et al. The mass-hierarchy and CP-violation discovery reach of the LBNO long-baseline neutrino experiment , 2013, 1312.6520.
[32] E. Lisi,et al. Status of three-neutrino oscillation parameters, circa 2013 , 2013, 1312.2878.
[33] Tejpreet Singh Golan,et al. Observation of electron neutrino appearance in a muon neutrino beam. , 2013, Physical review letters.
[34] Mattias Blennow,et al. Quantifying the sensitivity of oscillation experiments to the neutrino mass ordering , 2013, 1311.1822.
[35] A. Himmel. Recent results from Super-Kamiokande , 2013, 1310.6677.
[36] G F Cao,et al. Spectral measurement of electron antineutrino oscillation amplitude and frequency at Daya Bay. , 2013, Physical review letters.
[37] S. Choubey,et al. Determining the octant of θ23 with PINGU, T2K, NOνA and reactor data , 2013, 1309.5760.
[38] C. Bromberg,et al. Scientific Opportunities with the Long-Baseline Neutrino Experiment , 2013 .
[39] Los Alamos National Laboratory,et al. The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe , 2013, 1307.7335.
[40] K. Cranmer,et al. Erratum to: Asymptotic formulae for likelihood-based tests of new physics , 2013 .
[41] P. Machado,et al. What can we learn about the lepton CP phase in the next 10 years? , 2013, 1307.3248.
[42] S. Goswami,et al. Can atmospheric neutrino experiments provide the first hint of leptonic CP violation , 2013, 1306.2500.
[43] M. Murthy,et al. Anomalous Kolar events revisited: Dark matter? , 2013, 1305.2715.
[44] S. Hahn,et al. Measurement of neutrino and antineutrino oscillations using beam and atmospheric data in MINOS. , 2013, Physical review letters.
[45] M. Naimuddin,et al. Hadron energy response of the Iron Calorimeter detector at the India-based Neutrino Observatory , 2013, 1304.5115.
[46] S. Prakash,et al. Exploring the three flavor effects with future superbeams using liquid argon detectors , 2013, 1304.3251.
[47] S. Prakash,et al. Potential of optimized NOνA for large θ13 and combined performance with a LArTPC and T2K , 2013 .
[48] Jun Cao,et al. Unambiguous determination of the neutrino mass hierarchy using reactor neutrinos , 2013, 1303.6733.
[49] A. Dighe,et al. The reach of INO for atmospheric neutrino oscillation parameters , 2013, 1303.2534.
[50] S. Choubey,et al. Determining the neutrino mass hierarchy with INO, T2K, NOvA and reactor experiments , 2012, Journal of High Energy Physics.
[51] N. Mondal,et al. India-based Neutrino Observatory , 2012, Pramana.
[52] T. Kajita,et al. Atmospheric neutrino flux at INO, South Pole and Pyhasalmi , 2012, 1210.5154.
[53] T. Schwetz,et al. Global fit to three neutrino mixing: critical look at present precision , 2012, 1209.3023.
[54] G. P. Zeller,et al. From eV to EeV: Neutrino Cross Sections Across Energy Scales , 2012, 1305.7513.
[55] S. Prakash,et al. Potential of optimized NOνA for large θ13 & combined performance with a LArTPC & T2K , 2012, Journal of High Energy Physics.
[56] Atlas Collaboration. Search for Magnetic Monopoles in root s=7 TeV pp Collisions with the ATLAS Detector , 2012, 1207.6411.
[57] Alan D. Martin,et al. Review of Particle Physics (RPP) , 2012 .
[58] A. M. Guler,et al. Expression of Interest for a very long baseline neutrino oscillation experiment (LBNO) , 2012 .
[59] Y. K. Kim,et al. Fundamental Physics at the Intensity Frontier , 2012, 1205.2671.
[60] I. G. Park,et al. Observation of reactor electron antineutrinos disappearance in the RENO experiment. , 2012, Physical review letters.
[61] R. Gandhi,et al. Neutrino mass hierarchy and octant determination with atmospheric neutrinos. , 2012, Physical review letters.
[62] T. Schwetz,et al. Identifying the neutrino mass ordering with INO and NOvA , 2012, 1203.3388.
[63] L. Y. Wang,et al. Observation of electron-antineutrino disappearance at Daya Bay. , 2012, Physical review letters.
[64] J. I. Crespo-Anadón,et al. Indication of reactor ν(e) disappearance in the Double Chooz experiment. , 2012, Physical review letters.
[65] M. Toups,et al. Indication for the disappearance of reactor electron antineutrinos in the Double Chooz experiment , 2011, 1112.6353.
[66] I. Stancu,et al. The 2010 Interim Report of the Long-Baseline Neutrino Experiment Collaboration Physics Working Groups , 2011, 1110.6249.
[67] A. Rubbia,et al. An incremental approach to unravel the neutrino mass hierarchy and CP violation with a long-baseline superbeam for large θ13 , 2011, 1109.6526.
[68] H. Aihara,et al. Letter of Intent: The Hyper-Kamiokande Experiment --- Detector Design and Physics Potential --- , 2011, 1109.3262.
[69] Tejpreet Singh Golan,et al. Indication of electron neutrino appearance from an accelerator-produced off-axis muon neutrino beam. , 2011, Physical review letters.
[70] T. Kajita,et al. Improvement of low energy atmospheric neutrino flux calculation using the JAM nuclear interaction model , 2011, 1102.2688.
[71] K. Cranmer,et al. Asymptotic formulae for likelihood-based tests of new physics , 2010, 1007.1727.
[72] R. Gandhi,et al. Ultra-high neutrino fluxes as a probe for non-standard physics , 2010, 1006.3082.
[73] Irvine,et al. The T2K Experiment , 2009, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment.
[74] N. Sinha,et al. Effect of tau neutrino contribution to muon signals at neutrino factories , 2009, 0910.2020.
[75] M. Lindner,et al. First hint for CP violation in neutrino oscillations from upcoming superbeam and reactor experiments , 2009, 0907.1896.
[76] R. Hatcher,et al. The GENIE * Neutrino Monte Carlo Generator , 2009, 0905.2517.
[77] A. Heijboer,et al. Search for relativistic magnetic monopoles with the ANTARES neutrino telescope , 2008, Astroparticle Physics.
[78] J. Pinfold,et al. Magnetic monopole search at high altitude with the SLIM experiment , 2008, 0801.4913.
[79] S. Panda,et al. High-Energy Atmospheric Muon Flux Expected at India-Based Neutrino Observatory , 2007, 0710.3125.
[80] P. Vahle. Observation of Muon Neutrino Disappearance with the MINOS Detectors in the NuMI Neutrino Beam , 2007 .
[81] R. Gandhi,et al. Mass hierarchy determination via future atmospheric neutrino detectors , 2007, 0707.1723.
[82] Manfred Lindner,et al. New features in the simulation of neutrino oscillation experiments with GLoBES 3.0: (General Long Baseline Experiment Simulator) , 2007, Comput. Phys. Commun..
[83] T. Kajita,et al. Calculation of atmospheric neutrino flux using the interaction model calibrated with atmospheric muon data , 2006, astro-ph/0611418.
[84] T. Kajita,et al. Study of cosmic ray interaction model based on atmospheric muons for the neutrino flux calculation , 2006, astro-ph/0611201.
[85] N. Sinha,et al. Neutrino oscillation probabilities: Sensitivity to parameters , 2006, hep-ph/0603264.
[86] R. Gandhi,et al. Probing the Cosmic Ray "Knee" and Very High Energy Prompt Muon and Neutrino fluxes via Underground Muons , 2005 .
[87] R. Gandhi,et al. Probing very high energy prompt muon and neutrino fluxes and the cosmic ray knee via underground muons , 2005, hep-ph/0512179.
[88] P. Roy,et al. Probing the deviation from maximal mixing of atmospheric neutrinos , 2005, hep-ph/0509197.
[89] E. al.,et al. NOvA Proposal to Build a 30 Kiloton Off-Axis Detector to Study Neutrino Oscillations in the Fermilab NuMI Beamline , 2005, hep-ex/0503053.
[90] S. Parke,et al. Another possible way to determine the neutrino mass hierarchy , 2005, hep-ph/0503283.
[91] A. Gouvea,et al. Neutrino mass hierarchy, vacuum oscillations, and vanishing |U e3 | , 2005, hep-ph/0503079.
[92] R. Gandhi,et al. Large matter effects in numu-->nutau oscillations. , 2004, Physical review letters.
[93] M. Lindner,et al. Simulation of long-baseline neutrino oscillation experiments with GLoBES: (General Long Baseline Experiment Simulator) , 2004, Comput. Phys. Commun..
[94] P. Roy,et al. Testing the maximal nature of muon neutrino flavor mixing. , 2004, Physical review letters.
[95] M.Ishitsuka. Super-Kamiokande results: Atmospheric and solar neutrinos , 2004, hep-ex/0406076.
[96] M. Gonzalez-Garcia,et al. Atmospheric Neutrino Oscillations and New Physics , 2004, hep-ph/0404085.
[97] A. Moiseev,et al. Measurements of primary and atmospheric cosmic-ray spectra with the BESS-TeV spectrometer , 2004, astro-ph/0403704.
[98] Usa,et al. Three-dimensional calculation of atmospheric neutrinos , 2004, astro-ph/0403630.
[99] C. Bromberg,et al. NOvA: Proposal to Build a 30 Kiloton Off-Axis Detector to Study $\nu_{\mu} \to \nu_e$ Oscillations in the NuMI Beamline , 2004 .
[100] M. Lindner,et al. Series expansions for three-flavor neutrino oscillation probabilities in matter , 2004, hep-ph/0402175.
[101] A. Datta,et al. Atmospheric neutrinos as a probe of CPT violation , 2003, hep-ph/0312027.
[102] A. Datta,et al. Atmospheric Neutrinos as a Probe of CPT and Lorentz Violation , 2003 .
[103] P. Roy,et al. Testing maximality in muon neutrino flavor mixing , 2003 .
[104] P. Roy,et al. Testing whether muon neutrino flavor mixing is maximal , 2003, hep-ph/0310316.
[105] S. Mohanty,et al. Constraints on flavour-dependent long-range forces from atmospheric neutrino observations at Super-Kamiokande , 2003, hep-ph/0310210.
[106] A. Kostelecký,et al. Lorentz and CPT violation in neutrinos , 2003, hep-ph/0309025.
[107] A. Kostelecký,et al. Lorentz and CPT violation in the neutrino sector , 2003, hep-ph/0308300.
[108] S. Petcov,et al. Precision neutrino oscillation physics with an intermediate baseline reactor neutrino experiment , 2003, hep-ph/0306017.
[109] T. Montaruli,et al. Erratum to “The FLUKA atmospheric neutrino flux calculation” [Astropart. Phys. 19 (2003) 269–290] , 2003 .
[110] KamLAND-Zen Collaboration. First results from KamLAND: evidence for reactor antineutrino disappearance. , 2002, Physical review letters.
[111] E. Lisi,et al. Solar neutrino oscillation parameters after first KamLAND results , 2002, Physical Review D.
[112] S. Kim,et al. Indications of neutrino oscillation in a 250 km long-baseline experiment. , 2002, Physical review letters.
[113] J. Farine,et al. Measurement of the rate of νe+d → p+p+e− interactions produced by 8B solar neutrinos at the Sudbury Neutrino Observatory , 2002 .
[114] A. Bodek,et al. Letter of Intent to build an Off-axis Detector to study numu to nue oscillations with the NuMI Neutrino Beam , 2002 .
[115] W. Pauli,et al. Exclusion Principle, Lorentz Group and Reflection of Space-Time and Charge , 2002 .
[116] T. M. Collaboration,et al. Final results of magnetic monopole searches with the MACRO experiment , 2002, hep-ex/0207020.
[117] T.Montaruli,et al. The FLUKA atmospheric neutrino flux calculation , 2002, hep-ph/0207035.
[118] M. Lindner,et al. Superbeams versus neutrino factories , 2002, hep-ph/0204352.
[119] R. C. Allen,et al. Direct evidence for neutrino flavor transformation from neutral-current interactions in the Sudbury Neutrino Observatory. , 2002, Physical review letters.
[120] O. W. Greenberg. CPT violation implies violation of Lorentz invariance. , 2002, Physical review letters.
[121] S. Petcov,et al. The LMA MSW solution of the solar neutrino problem, inverted neutrino mass hierarchy and reactor neutrino experiments , 2001, hep-ph/0112074.
[122] J. Farine,et al. Measurement of the rate of ve + d → p + p + e- interactions produced by 8B solar neutrinos at the sudbury neutrino observatory , 2001 .
[123] F. Boehm,et al. Final results from the Palo Verde Neutrino Oscillation Experiment , 2001, hep-ex/0107009.
[124] T. T. D. Fatis. MONOLITH: a high resolution neutrino oscillation experiment , 2001, hep-ph/0106252.
[125] M. Freund. Analytic approximations for three neutrino oscillation parameters and probabilities in matter , 2001, hep-ph/0103300.
[126] M. Bañuls,et al. Medium effects for terrestrial and atmospheric neutrino oscillations , 2001 .
[127] P. Giusti,et al. The MONOLITH prototype , 2000 .
[128] S. Roesler,et al. The Monte Carlo Event Generator DPMJET-III , 2000, hep-ph/0012252.
[129] S. Dugad,et al. Discussion on a possible neutrino detector located in India , 2000, hep-ph/0112076.
[130] M. Strauss,et al. Improved experimental limits on the production of magnetic monopoles. , 2000, Physical review letters.
[131] J. Z. Wang,et al. Precise Measurement of Cosmic-Ray Proton and Helium Spectra with the BESS Spectrometer , 2000, astro-ph/0002481.
[132] M. Grassi,et al. Limits on neutrino oscillations from the CHOOZ experiment , 1999, hep-ex/9907037.
[133] S. Collaboration. Measurement of the solar neutrino capture rate with gallium metal , 1999, astro-ph/9907113.
[134] T. Kirsten. GALLEX solar neutrino results and status of GNO , 1999 .
[135] J. Derkaoui,et al. Energy losses of magnetic monopoles and dyons in scintillators, streamer tubes and nuclear track detectors , 1999 .
[136] S. Glashow,et al. High-energy tests of Lorentz invariance , 1998, hep-ph/9812418.
[137] J. Derkaoui,et al. Energy losses of magnetic monopoles and of dyons in the earth , 1998 .
[138] S. Sankar,et al. Three flavor implications of the result of the CHOOZ Collaboration , 1998 .
[139] The Super-Kamiokande Collaboration,et al. Evidence for oscillation of atmospheric neutrinos , 1998, hep-ex/9807003.
[140] T. E. al.. Measurements of the Solar Neutrino Flux from Super-Kamiokande's First 300 Days , 1998, hep-ex/9805021.
[141] M. Saha. The origin of mass in Neutrons and Protons , 1998 .
[142] C. K. Lee,et al. Measurement of the Solar Electron Neutrino Flux with the Homestake Chlorine Detector , 1998 .
[143] M. Grassi,et al. Initial Results from the CHOOZ Long Baseline Reactor Neutrino Oscillation Experiment , 1998 .
[144] S. Sankar,et al. Three flavor implications of CHOOZ result , 1997, hep-ph/9712409.
[145] A. Kostelecký,et al. $CPT$ violation and the standard model , 1997, hep-ph/9703464.
[146] Lisi,et al. Tests of three-flavor mixing in long-baseline neutrino oscillation experiments. , 1996, Physical review. D, Particles and fields.
[147] E. Wolin,et al. Covariance matrices for track fitting with the Kalman filter , 1993 .
[148] C. Bacci,et al. Solar neutrinos observed by GALLEX at Gran Sasso. , 1992 .
[149] Goodman,et al. Search for magnetic monopoles with the Soudan 2 detector. , 1991, Physical review. D, Particles and fields.
[150] Inoue,et al. Real-time, directional measurement of 8B solar neutrinos in the Kamiokande II detector. , 1991, Physical review. D, Particles and fields.
[151] P. Montagna,et al. Fast calculation of Vavilov distribution , 1990 .
[152] Chi,et al. New limit set on cosmic-ray monopole flux by a large-area superconducting magnetic-induction detector. , 1990, Physical review letters.
[153] K. Arisaka,et al. SEARCH FOR NUCLEON DECAYS CATALYZED BY MAGNETIC MONOPOLES , 1985 .
[154] T. Gaisser,et al. Flux of atmospheric neutrinos. , 1983, Physical review. D, Particles and fields.
[155] S. Ahlen,et al. Calculation of the stopping power of very-low-velocity magnetic monopoles , 1982 .
[156] Blas Cabrera,et al. First results from a superconductive detector for moving magnetic monopoles , 1982 .
[157] D. L. Anderson,et al. Preliminary reference earth model , 1981 .
[158] V. S. Narasimham,et al. Evidence for the production of new particles in cosmic ray experiments deep underground , 1975 .
[159] V. S. Narasimham,et al. Evidence for the production of a new particle in neutrino interactions , 1975 .
[160] Gerard 't Hooft,et al. Magnetic monopoles in unified gauge theories , 1974 .
[161] Alexander M. Polyakov,et al. Particle spectrum in quantum field theory , 1974 .
[162] P. H. Heckmann. Search for neutrinos from the Sun , 1973 .
[163] J. Sellschop,et al. Evidence for high-energy cosmic ray neutrino interactions , 1965 .
[164] V. S. Narasimham,et al. Detection of muons produced by cosmic ray neutrinos deep underground , 1965 .
[165] Z. Maki,et al. Remarks on the unified model of elementary particles , 1962 .
[166] B. Pontecorvo,et al. Mesonium and Antimesonium , 1957 .
[167] F. B. Harrison,et al. Detection of the Free Neutrino: a Confirmation. , 1956, Science.
[168] P. Dirac. Quantised Singularities in the Electromagnetic Field , 1931 .
[169] W. Hager,et al. and s , 2019, Shallow Water Hydraulics.
[170] A. Schukraft,et al. Letter of Intent: The Precision IceCube Next Generation Upgrade (PINGU) , 2017 .
[171] C. Spiering,et al. Search for relativistic magnetic monopoles with the Baikal neutrino telescope , 2007 .
[172] G.,et al. The TCP Theorem and its Applications 1 ) , 2005 .
[173] V. S. Narasimham. Perspectives of Experimental Neutrino Physics in India , 2004 .
[174] A. Dell'Acqua,et al. Geant4—a simulation toolkit , 2003 .
[175] G. Baria,et al. Analysis of the performance of the MONOLITH prototype , 2003 .
[176] 高エネルギー加速器研究機構,et al. The JHF-Kamioka neutrino project , 2001 .
[177] B. Villone,et al. MONOLITH: A massive magnetized iron detector for neutrino oscillation studies , 2000 .
[178] D. Petyt. A Study of parameter measurement in a long baseline neutrino oscillation experiment , 1998 .
[179] V. Turchin. The exclusion principle , 1988, Nature.
[180] D. Sokoloff,et al. Origin of Magnetic Fields , 1988 .
[181] Benno Schorr,et al. Programs for the Landau and the Vavilov distributions and the corresponding random numbers , 1984 .
[182] S. Ahlen. Stopping-power formula for magnetic monopoles , 1978 .
[183] G. Grawert,et al. TheTCP Theorem and its Applications , 1959 .
[184] J. Cockcroft,et al. Experimental Nuclear Physics , 1955, Nature.
[185] and as an in , 2022 .
[186] I. Miyazaki,et al. AND T , 2022 .