On the family of ML spectral estimates for mixed spectrum identification

A recently developed point spectrum identification procedure based on a family of AR and ML spectral estimates is exploited to arrive at a mixed spectrum identification procedure. To this end, a variety of properties of the AR and ML estimates as a function of model order are described. These properties relate to amplitude convergence, resolution and a characterization of the AR spectral artifact which is used to arrive at improved continuous spectral estimates. A variety of examples are presented. >

[1]  N. Levinson The Wiener (Root Mean Square) Error Criterion in Filter Design and Prediction , 1946 .

[2]  K. Hoffman Banach Spaces of Analytic Functions , 1962 .

[3]  J. P. Burg,et al.  Maximum entropy spectral analysis. , 1967 .

[4]  J. Capon,et al.  Multidimensional maximum-likelihood processing of a large aperture seismic array , 1967 .

[5]  J. Capon High-resolution frequency-wavenumber spectrum analysis , 1969 .

[6]  R. Lacoss DATA ADAPTIVE SPECTRAL ANALYSIS METHODS , 1971 .

[7]  J. Burg THE RELATIONSHIP BETWEEN MAXIMUM ENTROPY SPECTRA AND MAXIMUM LIKELIHOOD SPECTRA , 1972 .

[8]  V. Pisarenko The Retrieval of Harmonics from a Covariance Function , 1973 .

[9]  R. O. Schmidt,et al.  Multiple emitter location and signal Parameter estimation , 1986 .

[10]  R. Bhandari Maximum Entropy Spectral Analysis - Some Comments , 1978 .

[11]  Thomas Kailath,et al.  Linear Systems , 1980 .

[12]  S.M. Kay,et al.  Spectrum analysis—A modern perspective , 1981, Proceedings of the IEEE.

[13]  R. Kumaresan,et al.  Estimation of frequencies of multiple sinusoids: Making linear prediction perform like maximum likelihood , 1982, Proceedings of the IEEE.

[14]  D. Thomson,et al.  Spectrum estimation and harmonic analysis , 1982, Proceedings of the IEEE.

[15]  J. L. Hock,et al.  An exact recursion for the composite nearest‐neighbor degeneracy for a 2×N lattice space , 1984 .

[16]  David R. Brillinger,et al.  A maximum likelihood approach to frequency-wavenumber analysis , 1985, IEEE Trans. Acoust. Speech Signal Process..

[17]  P. J. Sherman,et al.  High resolution spectral estimation of sinusoids in colored noise using a modified Pisarenko decomposition , 1986, ICASSP '86. IEEE International Conference on Acoustics, Speech, and Signal Processing.

[18]  Thomas Kailath,et al.  ESPRIT-A subspace rotation approach to estimation of parameters of cisoids in noise , 1986, IEEE Trans. Acoust. Speech Signal Process..

[19]  Lewis Pakula Asymptotic zero distribution of orthogonal polynomials in sinusoidal frequency estimation , 1987, IEEE Trans. Inf. Theory.

[20]  Arthur E. Frazho,et al.  A geometric approach to the maximum likelihood spectral estimator for sinusoids in noise , 1988, IEEE Trans. Inf. Theory.

[21]  B. Porat,et al.  Digital Spectral Analysis with Applications. , 1988 .

[22]  Jean-Jacques Fuchs,et al.  Estimating the number of sinusoids in additive white noise , 1988, IEEE Trans. Acoust. Speech Signal Process..

[23]  A. Sano,et al.  Separable estimation of discrete and continuous spectra of signal with mixed spectrum , 1989, International Conference on Acoustics, Speech, and Signal Processing,.

[24]  P. J. Sherman,et al.  A new method for point power spectrum estimation , 1989, International Conference on Acoustics, Speech, and Signal Processing,.