Symmetry Evolution in Chaotic System

A comprehensive exploration of symmetry and conditional symmetry is made from the evolution of symmetry. Unlike other chaotic systems of conditional symmetry, in this work it is derived from the symmetric diffusionless Lorenz system. Transformation from symmetry and asymmetry to conditional symmetry is examined by constant planting and dimension growth, which proves that the offset boosting of some necessary variables is the key factor for reestablishing polarity balance in a dynamical system.

[1]  Julien Clinton Sprott,et al.  Constructing chaotic systems with conditional symmetry , 2017 .

[2]  Julien Clinton Sprott,et al.  Linearization of the Lorenz system , 2015 .

[3]  Xu Zhang Constructing a Chaotic System with Any Number of Attractors , 2017, Int. J. Bifurc. Chaos.

[4]  Julien Clinton Sprott,et al.  Offset Boosting for Breeding Conditional Symmetry , 2018, Int. J. Bifurc. Chaos.

[5]  Hairong Lin,et al.  Chaotic system with bondorbital attractors , 2019, Nonlinear Dynamics.

[6]  T. N. Mokaev,et al.  Numerical analysis of dynamical systems: unstable periodic orbits, hidden transient chaotic sets, hidden attractors, and finite-time Lyapunov dimension , 2018, Journal of Physics: Conference Series.

[7]  Sajad Jafari,et al.  Controlling Coexisting Attractors of Conditional Symmetry , 2019, Int. J. Bifurc. Chaos.

[8]  Leo R. M. Maas,et al.  The diffusionless Lorenz equations; Shil'nikov bifurcations and reduction to an explicit map , 2000 .

[9]  J. C. Sprott,et al.  Asymmetric Bistability in the R\"{o}ssler System , 2017 .

[10]  Julien Clinton Sprott,et al.  Simplest Chaotic Flows with Involutional Symmetries , 2014, Int. J. Bifurc. Chaos.

[11]  Qiang Lai,et al.  Generating Multiple Chaotic Attractors from Sprott B System , 2016, Int. J. Bifurc. Chaos.

[12]  Chunhua Wang,et al.  Multiscroll Hyperchaotic System with Hidden Attractors and Its Circuit Implementation , 2019, Int. J. Bifurc. Chaos.

[13]  Bocheng Bao,et al.  Hidden extreme multistability in memristive hyperchaotic system , 2017 .

[14]  T. N. Mokaev,et al.  Finite-time Lyapunov dimension and hidden attractor of the Rabinovich system , 2015, 1504.04723.

[15]  Chunhua Wang,et al.  Multi-scroll hidden attractors with two stable equilibrium points. , 2019, Chaos.

[16]  Fuhong Min,et al.  Constructing hyperchaotic attractors of conditional symmetry , 2019, The European Physical Journal B.

[17]  Roberto Barrio,et al.  Qualitative analysis of the Rössler equations: Bifurcations of limit cycles and chaotic attractors , 2009 .

[18]  Julien Clinton Sprott,et al.  Variable-boostable chaotic flows , 2016 .

[19]  Hongjun Liu,et al.  Dynamic Analysis of a One-Parameter Chaotic System in Complex Field , 2020, IEEE Access.

[20]  Guanrong Chen,et al.  Doubling the coexisting attractors. , 2019, Chaos.

[21]  Julien Clinton Sprott,et al.  Coexistence of Point, periodic and Strange attractors , 2013, Int. J. Bifurc. Chaos.

[22]  T. N. Mokaev,et al.  Homoclinic orbits, and self-excited and hidden attractors in a Lorenz-like system describing convective fluid motion Homoclinic orbits, and self-excited and hidden attractors , 2015 .

[23]  Karthikeyan Rajagopal,et al.  Extreme multi-stability: When imperfection changes quality , 2018 .