Symmetry Evolution in Chaotic System
暂无分享,去创建一个
Tengfei Lei | Jiayu Sun | Chunbiao Li | Tianai Lu | Chunbiao Li | Jiayu Sun | Tengfei Lei | Tianai Lu
[1] Julien Clinton Sprott,et al. Constructing chaotic systems with conditional symmetry , 2017 .
[2] Julien Clinton Sprott,et al. Linearization of the Lorenz system , 2015 .
[3] Xu Zhang. Constructing a Chaotic System with Any Number of Attractors , 2017, Int. J. Bifurc. Chaos.
[4] Julien Clinton Sprott,et al. Offset Boosting for Breeding Conditional Symmetry , 2018, Int. J. Bifurc. Chaos.
[5] Hairong Lin,et al. Chaotic system with bondorbital attractors , 2019, Nonlinear Dynamics.
[6] T. N. Mokaev,et al. Numerical analysis of dynamical systems: unstable periodic orbits, hidden transient chaotic sets, hidden attractors, and finite-time Lyapunov dimension , 2018, Journal of Physics: Conference Series.
[7] Sajad Jafari,et al. Controlling Coexisting Attractors of Conditional Symmetry , 2019, Int. J. Bifurc. Chaos.
[8] Leo R. M. Maas,et al. The diffusionless Lorenz equations; Shil'nikov bifurcations and reduction to an explicit map , 2000 .
[9] J. C. Sprott,et al. Asymmetric Bistability in the R\"{o}ssler System , 2017 .
[10] Julien Clinton Sprott,et al. Simplest Chaotic Flows with Involutional Symmetries , 2014, Int. J. Bifurc. Chaos.
[11] Qiang Lai,et al. Generating Multiple Chaotic Attractors from Sprott B System , 2016, Int. J. Bifurc. Chaos.
[12] Chunhua Wang,et al. Multiscroll Hyperchaotic System with Hidden Attractors and Its Circuit Implementation , 2019, Int. J. Bifurc. Chaos.
[13] Bocheng Bao,et al. Hidden extreme multistability in memristive hyperchaotic system , 2017 .
[14] T. N. Mokaev,et al. Finite-time Lyapunov dimension and hidden attractor of the Rabinovich system , 2015, 1504.04723.
[15] Chunhua Wang,et al. Multi-scroll hidden attractors with two stable equilibrium points. , 2019, Chaos.
[16] Fuhong Min,et al. Constructing hyperchaotic attractors of conditional symmetry , 2019, The European Physical Journal B.
[17] Roberto Barrio,et al. Qualitative analysis of the Rössler equations: Bifurcations of limit cycles and chaotic attractors , 2009 .
[18] Julien Clinton Sprott,et al. Variable-boostable chaotic flows , 2016 .
[19] Hongjun Liu,et al. Dynamic Analysis of a One-Parameter Chaotic System in Complex Field , 2020, IEEE Access.
[20] Guanrong Chen,et al. Doubling the coexisting attractors. , 2019, Chaos.
[21] Julien Clinton Sprott,et al. Coexistence of Point, periodic and Strange attractors , 2013, Int. J. Bifurc. Chaos.
[22] T. N. Mokaev,et al. Homoclinic orbits, and self-excited and hidden attractors in a Lorenz-like system describing convective fluid motion Homoclinic orbits, and self-excited and hidden attractors , 2015 .
[23] Karthikeyan Rajagopal,et al. Extreme multi-stability: When imperfection changes quality , 2018 .