Supporting Information Title: Aggregation-triggering segments of SOD1 fibril formation support a common pathway for familial and sporadic ALS

Title: Aggregation-triggering segments of SOD1 fibril formation support a common pathway for familial and sporadic ALS Authors: Magdalena I Ivanova, Stuart A Sievers, Elizabeth L. Guenther, Lisa M. Johnson, Duane D. Winkler, Ahmad Galaleldeen, Michael R Sawaya, P. John Hart, David Eisenberg Corresponding author: Howard Hughes Medical Institute, UCLA-DOE Institute for Genomics and Proteomics, Department of Biological Chemistry, UCLA, Los Angeles CA 9095-1570 Email: david@mbi.ucla.edu Phone: 310 825-3754

[1]  John P. Moore,et al.  Enhancement of alpha-helix mimicry by an alpha / beta-peptide foldamer via incorporation of a dense ionic side-chain array. , 2012 .

[2]  Randy J. Read,et al.  Overview of the CCP4 suite and current developments , 2011, Acta crystallographica. Section D, Biological crystallography.

[3]  D. Eisenberg,et al.  Identifying the amylome, proteins capable of forming amyloid-like fibrils , 2010, Proceedings of the National Academy of Sciences.

[4]  Randy J. Read,et al.  Phaser crystallographic software , 2007, Journal of applied crystallography.

[5]  I. Bertini,et al.  Metal-free superoxide dismutase forms soluble oligomers under physiological conditions: A possible general mechanism for familial ALS , 2007, Proceedings of the National Academy of Sciences.

[6]  Borries Demeler,et al.  Dissociation of Human Copper-Zinc Superoxide Dismutase Dimers Using Chaotrope and Reductant , 2004, Journal of Biological Chemistry.

[7]  John A Tainer,et al.  ALS mutants of human superoxide dismutase form fibrous aggregates via framework destabilization. , 2003, Journal of molecular biology.

[8]  G. Murshudov,et al.  Refinement of macromolecular structures by the maximum-likelihood method. , 1997, Acta crystallographica. Section D, Biological crystallography.

[9]  Collaborative Computational,et al.  The CCP4 suite: programs for protein crystallography. , 1994, Acta crystallographica. Section D, Biological crystallography.

[10]  H. Wolfson,et al.  Shape complementarity at protein–protein interfaces , 1994, Biopolymers.

[11]  Wolfgang Kabsch,et al.  Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants , 1993 .

[12]  Z. Otwinowski,et al.  Processing of X-ray diffraction data collected in oscillation mode. , 1997, Methods in enzymology.

[13]  Vincent B. Chen,et al.  PHENIX: a comprehensive Python-based system for macromolecular structure solution , 2010, Acta crystallographica. Section D, Biological crystallography.