Antibacterial drug discovery in the resistance era

[1]  Andrew G McArthur,et al.  Bioinformatics of antimicrobial resistance in the age of molecular epidemiology. , 2015, Current opinion in microbiology.

[2]  E. Brown,et al.  Unconventional screening approaches for antibiotic discovery , 2015, Annals of the New York Academy of Sciences.

[3]  Shawn French,et al.  Antagonism screen for inhibitors of bacterial cell wall biogenesis uncovers an inhibitor of undecaprenyl diphosphate synthase , 2015, Proceedings of the National Academy of Sciences.

[4]  Dean G. Brown,et al.  ESKAPEing the labyrinth of antibacterial discovery , 2015, Nature Reviews Drug Discovery.

[5]  Corie Lok,et al.  Mining the microbial dark matter , 2015, Nature.

[6]  J. H. Comroe Pay Dirt: The Story of Streptomycin , 2015 .

[7]  Pascal Simonet,et al.  The soil resistome: a critical review on antibiotic resistance origins, ecology and dissemination potential in telluric bacteria. , 2015, Environmental microbiology.

[8]  M. Whiteley,et al.  Essential genome of Pseudomonas aeruginosa in cystic fibrosis sputum , 2015, Proceedings of the National Academy of Sciences.

[9]  K. Lewis,et al.  A new antibiotic kills pathogens without detectable resistance , 2015, Nature.

[10]  J. Bartlett,et al.  Novel approaches are needed to develop tomorrow's antibacterial therapies. , 2015, American journal of respiratory and critical care medicine.

[11]  J. Collins,et al.  Unraveling the physiological complexities of antibiotic lethality. , 2015, Annual review of pharmacology and toxicology.

[12]  T. Bernhardt,et al.  Beta-Lactam Antibiotics Induce a Lethal Malfunctioning of the Bacterial Cell Wall Synthesis Machinery , 2014, Cell.

[13]  Heejun Kim,et al.  Privileged structures: efficient chemical "navigators" toward unexplored biologically relevant chemical spaces. , 2014, Journal of the American Chemical Society.

[14]  Gerard D. Wright,et al.  The antibiotic resistome: what's new? , 2014, Current opinion in microbiology.

[15]  A. Tzika,et al.  Identification of Anti-virulence Compounds That Disrupt Quorum-Sensing Regulated Acute and Persistent Pathogenicity , 2014, PLoS pathogens.

[16]  B. Spellberg The future of antibiotics , 2014, Critical Care.

[17]  N. Strynadka,et al.  Aspergillomarasmine A overcomes metallo-β-lactamase antibiotic resistance , 2014, Nature.

[18]  Bing Chen,et al.  Specialized Transduction Designed for Precise High-Throughput Unmarked Deletions in Mycobacterium tuberculosis , 2014, mBio.

[19]  Molly K. Gibson,et al.  Bacterial phylogeny structures soil resistomes across habitats , 2014, Nature.

[20]  Ahmad S Khalil,et al.  Antibiotics induce redox-related physiological alterations as part of their lethality. , 2014, Proceedings of the National Academy of Sciences of the United States of America.

[21]  Christian Rinke,et al.  An environmental bacterial taxon with a large and distinct metabolic repertoire , 2014, Nature.

[22]  Venkatesham Rachakonda,et al.  Design, diversity-oriented synthesis and structure activity relationship studies of quinolinyl heterocycles as antimycobacterial agents. , 2013, European journal of medicinal chemistry.

[23]  E. Brown,et al.  Metabolic suppression identifies new antibacterial inhibitors under nutrient limitation , 2013, Nature chemical biology.

[24]  Se Yeon Kim,et al.  Discovery of Q203, a potent clinical candidate for the treatment of tuberculosis , 2013, Nature Medicine.

[25]  Edward Topp,et al.  The scourge of antibiotic resistance: the important role of the environment. , 2013, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[26]  Gerard D. Wright,et al.  Intrinsic antibiotic resistance: mechanisms, origins, challenges and solutions. , 2013, International journal of medical microbiology : IJMM.

[27]  A. Camilli,et al.  Transposon insertion sequencing: a new tool for systems-level analysis of microorganisms , 2013, Nature Reviews Microbiology.

[28]  T. Roemer,et al.  Discovery of wall teichoic acid inhibitors as potential anti-MRSA β-lactam combination agents. , 2013, Chemistry & biology.

[29]  E. Brown Is the GAIN Act a turning point in new antibiotic discovery? , 2013, Canadian journal of microbiology.

[30]  F. Murphy,et al.  A structural basis for streptomycin-induced misreading of the genetic code , 2012, Nature Communications.

[31]  M. Brynildsen,et al.  Potentiating antibacterial activity by predictably enhancing endogenous microbial ROS production , 2012, Nature Biotechnology.

[32]  Pedro M. Pereira,et al.  Inhibition of WTA Synthesis Blocks the Cooperative Action of PBPs and Sensitizes MRSA to β-Lactams , 2012, ACS chemical biology.

[33]  Daniel N. Wilson Ribosome-targeting antibiotics and mechanisms of bacterial resistance , 2013, Nature Reviews Microbiology.

[34]  V. Shanmugasundaram,et al.  Non-Traditional Antibacterial Screening Approaches for the Identification of Novel Inhibitors of the Glyoxylate Shunt in Gram-Negative Pathogens , 2012, PloS one.

[35]  G. Dantas,et al.  The Shared Antibiotic Resistome of Soil Bacteria and Human Pathogens , 2012, Science.

[36]  Gerard D. Wright,et al.  A forward chemical screen identifies antibiotic adjuvants in Escherichia coli. , 2012, ACS chemical biology.

[37]  K. Lewis,et al.  Antibiotics: Recover the lost art of drug discovery , 2012, Nature.

[38]  Andrew C. Pawlowski,et al.  Antibiotic Resistance Is Prevalent in an Isolated Cave Microbiome , 2012, PloS one.

[39]  Eric Langlois,et al.  Restoring Methicillin-Resistant Staphylococcus aureus Susceptibility to β-Lactam Antibiotics , 2012, Science Translational Medicine.

[40]  A. Emili,et al.  Genetic Interaction Maps in Escherichia coli Reveal Functional Crosstalk among Cell Envelope Biogenesis Pathways , 2011, PLoS genetics.

[41]  G. B. Golding,et al.  Antibiotic resistance is ancient , 2011, Nature.

[42]  D. Andersson,et al.  Persistence of antibiotic resistance in bacterial populations. , 2011, FEMS microbiology reviews.

[43]  Mike Tyers,et al.  Combinations of antibiotics and nonantibiotic drugs enhance antimicrobial efficacy. , 2011, Nature chemical biology.

[44]  D. Bojanic,et al.  Impact of high-throughput screening in biomedical research , 2011, Nature Reviews Drug Discovery.

[45]  N. Krogan,et al.  Phenotypic Landscape of a Bacterial Cell , 2011, Cell.

[46]  L. Silver Challenges of Antibacterial Discovery , 2011, Clinical Microbiology Reviews.

[47]  J Richard Miller,et al.  Structural basis for effectiveness of siderophore-conjugated monocarbams against clinically relevant strains of Pseudomonas aeruginosa , 2010, Proceedings of the National Academy of Sciences.

[48]  R. H. Baltz,et al.  Daptomycin: from the mountain to the clinic, with essential help from Francis Tally, MD. , 2010, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[49]  Gary D Bader,et al.  The Genetic Landscape of a Cell , 2010, Science.

[50]  Kim Lee,et al.  Antibiotic Sensitivity Profiles Determined with an Escherichia coli Gene Knockout Collection: Generating an Antibiotic Bar Code , 2010, Antimicrobial Agents and Chemotherapy.

[51]  J. Davies,et al.  Origins and Evolution of Antibiotic Resistance , 1996, Microbiology and Molecular Biology Reviews.

[52]  E. Brown,et al.  Chemical genomics in Escherichia coli identifies an inhibitor of bacterial lipoprotein targeting. , 2009, Nature chemical biology.

[53]  R. Kishony,et al.  Discovery of a small molecule that blocks wall teichoic acid biosynthesis in Staphylococcus aureus. , 2009, ACS chemical biology.

[54]  Eric D Brown,et al.  Are essential genes really essential? , 2009, Trends in microbiology.

[55]  Christopher T. Walsh,et al.  Antibiotics for Emerging Pathogens , 2009, Science.

[56]  A. Bender,et al.  The Discovery of Antibacterial Agents Using Diversity‐Oriented Synthesis , 2009 .

[57]  E. Brown,et al.  Probing teichoic acid genetics with bioactive molecules reveals new interactions among diverse processes in bacterial cell wall biogenesis. , 2009, Chemistry & biology.

[58]  Anton J. Enright,et al.  Network visualization and analysis of gene expression data using BioLayout Express3D , 2009, Nature Protocols.

[59]  Fernando Baquero,et al.  The Neglected Intrinsic Resistome of Bacterial Pathogens , 2008, PloS one.

[60]  H. Moser,et al.  Physicochemical properties of antibacterial compounds: implications for drug discovery. , 2008, Journal of medicinal chemistry.

[61]  G. Ackermann,et al.  OPT-80, a macrocyclic antimicrobial agent for the treatment of Clostridium difficile infections: a review. , 2008, Expert opinion on investigational drugs.

[62]  Gerard D. Wright The antibiotic resistome: the nexus of chemical and genetic diversity , 2007, Nature Reviews Microbiology.

[63]  D. Pompliano,et al.  Drugs for bad bugs: confronting the challenges of antibacterial discovery , 2007, Nature Reviews Drug Discovery.

[64]  Andrew R. Joyce,et al.  Experimental and Computational Assessment of Conditionally Essential Genes in Escherichia coli , 2006, Journal of bacteriology.

[65]  Wenjun Zhao,et al.  Lesions in Teichoic Acid Biosynthesis in Staphylococcus aureus Lead to a Lethal Gain of Function in the Otherwise Dispensable Pathway , 2006, Journal of bacteriology.

[66]  H. Mori,et al.  Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection , 2006, Molecular systems biology.

[67]  D. Hughes,et al.  Sampling the Antibiotic Resistome , 2006, Science.

[68]  Richard H. Baltz,et al.  Marcel Faber Roundtable: Is our antibiotic pipeline unproductive because of starvation, constipation or lack of inspiration? , 2006, Journal of Industrial Microbiology and Biotechnology.

[69]  A. Charbit,et al.  Lessons from signature-tagged mutagenesis on the infectious mechanisms of pathogenic bacteria. , 2005, FEMS microbiology reviews.

[70]  K. Gerdes,et al.  Prokaryotic toxin–antitoxin stress response loci , 2005, Nature Reviews Microbiology.

[71]  A. Emili,et al.  Interaction network containing conserved and essential protein complexes in Escherichia coli , 2005, Nature.

[72]  Eric D Brown,et al.  New targets and screening approaches in antimicrobial drug discovery. , 2005, Chemical reviews.

[73]  János Bérdy,et al.  Bioactive microbial metabolites. , 2005, The Journal of antibiotics.

[74]  Eric Haugen,et al.  Comprehensive transposon mutant library of Pseudomonas aeruginosa , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[75]  J. Lehár,et al.  Systematic discovery of multicomponent therapeutics , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[76]  S. Ehrlich,et al.  Essential Bacillus subtilis genes , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[77]  Howard Xu,et al.  A genome‐wide strategy for the identification of essential genes in Staphylococcus aureus , 2002, Molecular microbiology.

[78]  Gary D Bader,et al.  Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry , 2002, Nature.

[79]  F. Lombardo,et al.  Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. , 2001, Advanced drug delivery reviews.

[80]  R. Fleischmann,et al.  Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. , 1995, Science.

[81]  J. Shea,et al.  Simultaneous identification of bacterial virulence genes by negative selection. , 1995, Science.

[82]  J. H. Comroe Pay dirt: the story of streptomycin. Part I. From Waksman to Waksman. , 1978, The American review of respiratory disease.

[83]  E. Abraham,et al.  An Enzyme from Bacteria able to Destroy Penicillin , 1940, Nature.

[84]  A. Fleming,et al.  On the antibacterial action of cultures of a penicillium, with special reference to their use in the isolation of B. influenzæ , 1929 .