A new Lagrange multiplier approach for constructing structure-preserving schemes, II. bound preserving

In the second part of this series, we use the Lagrange multiplier approach proposed in the first part [7] to construct efficient and accurate bound and/or mass preserving schemes for a class of semi-linear and quasi-linear parabolic equations. We establish stability results under a general setting, and carry out an error analysis for a secondorder bound preserving scheme with a hybrid spectral discretization in space. We apply our approach to several typical PDEs which preserve bound and/or mass, also present ample numerical results to validate our approach.

[1]  Weizhang Huang,et al.  The cutoff method for the numerical computation of nonnegative solutions of parabolic PDEs with application to anisotropic diffusion and Lubrication-type equations , 2012, J. Comput. Phys..

[2]  Patrick T. Harker,et al.  Finite-dimensional variational inequality and nonlinear complementarity problems: A survey of theory, algorithms and applications , 1990, Math. Program..

[3]  Jie Shen,et al.  Spectral Methods: Algorithms, Analysis and Applications , 2011 .

[4]  Qiang Du,et al.  Maximum Principle Preserving Exponential Time Differencing Schemes for the Nonlocal Allen-Cahn Equation , 2019, SIAM J. Numer. Anal..

[5]  Jesús Rosado,et al.  1D nonlinear Fokker-Planck equations for fermions and bosons , 2008, Appl. Math. Lett..

[6]  J. Cahn,et al.  A microscopic theory for antiphase boundary motion and its application to antiphase domain coasening , 1979 .

[7]  L. Segel,et al.  Initiation of slime mold aggregation viewed as an instability. , 1970, Journal of theoretical biology.

[8]  Huifang Zhou,et al.  Physical-bound-preserving finite volume methods for the Nagumo equation on distorted meshes , 2019, Comput. Math. Appl..

[9]  Arnaud Debussche,et al.  On the Cahn-Hilliard equation with a logarithmic free energy , 1995 .

[10]  K. Kunisch,et al.  Primal-Dual Strategy for Constrained Optimal Control Problems , 1999 .

[11]  Cheng Wang,et al.  Positivity-preserving, energy stable numerical schemes for the Cahn-Hilliard equation with logarithmic potential , 2017, J. Comput. Phys. X.

[12]  C. M. Elliott,et al.  On the Cahn-Hilliard equation with degenerate mobility , 1996 .

[13]  Hailiang Liu,et al.  Maximum-Principle-Satisfying Third Order Discontinuous Galerkin Schemes for Fokker-Planck Equations , 2014, SIAM J. Sci. Comput..

[14]  Qing Cheng,et al.  A new Lagrange multiplier approach for constructing structure preserving schemes, I. Positivity preserving , 2021, Computer Methods in Applied Mechanics and Engineering.

[15]  J. E. Hilliard,et al.  Free Energy of a Nonuniform System. I. Interfacial Free Energy , 1958 .

[16]  Yan Xu,et al.  Positivity Preserving Limiters for Time-Implicit Higher Order Accurate Discontinuous Galerkin Discretizations , 2018, SIAM J. Sci. Comput..

[17]  Xiangxiong Zhang,et al.  A bound-preserving high order scheme for variable density incompressible Navier-Stokes equations , 2021, J. Comput. Phys..

[18]  Cheng Wang,et al.  Stability and Convergence Analysis of Fully Discrete Fourier Collocation Spectral Method for 3-D Viscous Burgers’ Equation , 2012, J. Sci. Comput..

[19]  Jérôme Droniou,et al.  Construction and Convergence Study of Schemes Preserving the Elliptic Local Maximum Principle , 2011, SIAM J. Numer. Anal..

[20]  J. E. Hilliard,et al.  Free Energy of a Nonuniform System. I. Interfacial Free Energy and Free Energy of a Nonuniform System. III. Nucleation in a Two‐Component Incompressible Fluid , 2013 .

[21]  T. A. Zang,et al.  Spectral methods for fluid dynamics , 1987 .

[22]  Lili Ju,et al.  Maximum bound principles for a class of semilinear parabolic equations and exponential time differencing schemes , 2020, SIAM Rev..

[23]  Zheng Sun,et al.  A discontinuous Galerkin method for nonlinear parabolic equations and gradient flow problems with interaction potentials , 2017, J. Comput. Phys..

[24]  P. G. Ciarlet,et al.  Maximum principle and uniform convergence for the finite element method , 1973 .

[25]  Philippe G. Ciarlet,et al.  Discrete maximum principle for finite-difference operators , 1970 .

[26]  F. Facchinei,et al.  Finite-Dimensional Variational Inequalities and Complementarity Problems , 2003 .

[27]  S. Sharma,et al.  The Fokker-Planck Equation , 2010 .

[28]  Ivan P. Gavrilyuk,et al.  Lagrange multiplier approach to variational problems and applications , 2010, Math. Comput..