Air‐Stable Copper‐Based P2‐Na7/9Cu2/9Fe1/9Mn2/3O2 as a New Positive Electrode Material for Sodium‐Ion Batteries

An air‐stable copper‐based P2‐Na7/9Cu2/9Fe1/9Mn2/3O2 is designed and synthesized by a simple solid‐state method and investigated as a positive electrode material for sodium‐ion batteries. The attractive long cycling stability is demonstrated by the capacity retention of 85% after 150 cycles at 1 C rate without phase transformation. The reversible Cu2+/Cu3+ redox couple in P2 phase oxides is proved for the first time.

[1]  Wei Wang,et al.  High capacity, reversible alloying reactions in SnSb/C nanocomposites for Na-ion battery applications. , 2012, Chemical communications.

[2]  K. Deboudt,et al.  Fe and Mn oxidation states by TEM-EELS in fine-particle emissions from a Fe-Mn alloy making plant. , 2013, Environmental science & technology.

[3]  Shinichi Komaba,et al.  P2-type Na(x)[Fe(1/2)Mn(1/2)]O2 made from earth-abundant elements for rechargeable Na batteries. , 2012, Nature materials.

[4]  H. Tan,et al.  Oxidation state and chemical shift investigation in transition metal oxides by EELS , 2012 .

[5]  A. Yamada,et al.  Electrode Properties of P2–Na2/3MnyCo1–yO2 as Cathode Materials for Sodium-Ion Batteries , 2013 .

[6]  Jing Zhou,et al.  Superior Electrochemical Performance and Storage Mechanism of Na3V2(PO4)3 Cathode for Room‐Temperature Sodium‐Ion Batteries , 2013 .

[7]  Jean-Marie Tarascon,et al.  Synthesis, Structure, and Electrochemical Properties of the Layered Sodium Insertion Cathode Material: NaNi1/3Mn1/3Co1/3O2 , 2012 .

[8]  Shinichi Komaba,et al.  Research development on sodium-ion batteries. , 2014, Chemical reviews.

[9]  D. Yu,et al.  Iron(III) sulfate: a stable, cost effective electrode material for sodium ion batteries. , 2014, Chemical communications.

[10]  Gerbrand Ceder,et al.  Electrode Materials for Rechargeable Sodium‐Ion Batteries: Potential Alternatives to Current Lithium‐Ion Batteries , 2012 .

[11]  Xinping Ai,et al.  High capacity Na-storage and superior cyclability of nanocomposite Sb/C anode for Na-ion batteries. , 2012, Chemical communications.

[12]  Kazuma Gotoh,et al.  Electrochemical Na Insertion and Solid Electrolyte Interphase for Hard‐Carbon Electrodes and Application to Na‐Ion Batteries , 2011 .

[13]  Linda F. Nazar,et al.  Topochemical Synthesis of Sodium Metal Phosphate Olivines for Sodium-Ion Batteries , 2011 .

[14]  K. Kubota,et al.  Layered oxides as positive electrode materials for Na-ion batteries , 2014 .

[15]  Xiqian Yu,et al.  A size-dependent sodium storage mechanism in Li4Ti5O12 investigated by a novel characterization technique combining in situ X-ray diffraction and chemical sodiation. , 2013, Nano letters.

[16]  Donghan Kim,et al.  Sodium‐Ion Batteries , 2013 .

[17]  M. Armand,et al.  Building better batteries , 2008, Nature.

[18]  Marca M. Doeff,et al.  Orthorhombic Na x MnO2 as a Cathode Material for Secondary Sodium and Lithium Polymer Batteries , 1994 .

[19]  Chen Liquan,et al.  New layered metal oxides as positive electrode materials for room-temperature sodium-ion batteries* , 2015 .

[20]  Shinichi Komaba,et al.  Study on the reversible electrode reaction of Na(1-x)Ni(0.5)Mn(0.5)O2 for a rechargeable sodium-ion battery. , 2012, Inorganic chemistry.

[21]  A. Mendiboure,et al.  Electrochemical intercalation and deintercalation of NaxMnO2 bronzes , 1985 .

[22]  Liquan Chen,et al.  Room-temperature stationary sodium-ion batteries for large-scale electric energy storage , 2013 .

[23]  P. Hagenmuller,et al.  Etude par desintercalation electrochimique des systemes NaxCrO2 et NaxNiO2 , 1982 .

[24]  P. Hagenmuller,et al.  Electrochemical intercalation of sodium in NaxCoO2 bronzes , 1981 .

[25]  Teófilo Rojo,et al.  Update on Na-based battery materials. A growing research path , 2013 .

[26]  Michel Armand,et al.  A new class of Solvent-in-Salt electrolyte for high-energy rechargeable metallic lithium batteries , 2013, Nature Communications.

[27]  Donghan Kim,et al.  Layered Na[Ni1/3Fe1/3Mn1/3]O2 cathodes for Na-ion battery application , 2012 .

[28]  Masayoshi Ishida,et al.  Novel titanium-based O3-type NaTi(0.5)Ni(0.5)O2 as a cathode material for sodium ion batteries. , 2014, Chemical communications.

[29]  Zhenguo Yang,et al.  Reversible Sodium Ion Insertion in Single Crystalline Manganese Oxide Nanowires with Long Cycle Life , 2011, Advanced materials.

[30]  Lin Gu,et al.  Direct atomic-scale confirmation of three-phase storage mechanism in Li4Ti5O12 anodes for room-temperature sodium-ion batteries , 2013, Nature Communications.

[31]  Yuki Yamada,et al.  Sodium iron pyrophosphate: A novel 3.0 V iron-based cathode for sodium-ion batteries , 2012 .

[32]  Yuesheng Wang,et al.  A zero-strain layered metal oxide as the negative electrode for long-life sodium-ion batteries , 2013, Nature Communications.

[33]  Gerbrand Ceder,et al.  Electrochemical properties of NaNi1/3Co1/3Fe1/3O2 as a cathode material for Na-ion batteries , 2014 .

[34]  D. Stevens,et al.  High Capacity Anode Materials for Rechargeable Sodium‐Ion Batteries , 2000 .

[35]  Mark N. Obrovac,et al.  Structure and Electrochemistry of NaxFexMn1-xO2 (1.0 , 2013 .

[36]  Shin-ichi Nishimura,et al.  A 3.8-V earth-abundant sodium battery electrode , 2014, Nature Communications.

[37]  Jean-Marie Tarascon,et al.  Na2Ti3O7: Lowest voltage ever reported oxide insertion electrode for sodium ion batteries , 2011 .

[38]  C. Delmas,et al.  Structural and Electrochemical Characterizations of P2 and New O3-NaxMn1-yFeyO2 Phases Prepared by Auto-Combustion Synthesis for Na-Ion Batteries , 2013 .

[39]  Xiqian Yu,et al.  Identifying the Critical Role of Li Substitution in P2− Na x (Li y Ni z Mn 1−y−z )O 2 (0 < x, y, z < 1) Intercalation Cathode Materials for High-Energy Na-Ion Batteries , 2014 .

[40]  K. Kubota,et al.  P2-type Na(2/3)Ni(1/3)Mn(2/3-x)Ti(x)O2 as a new positive electrode for higher energy Na-ion batteries. , 2014, Chemical communications.

[41]  T. R. Jow,et al.  Rechargeable Electrodes from Sodium Cobalt Bronzes , 1988 .

[42]  Gerbrand Ceder,et al.  Electrochemical Properties of Monoclinic NaNiO2 , 2011 .

[43]  Shinichi Komaba,et al.  Electrochemical intercalation activity of layered NaCrO2 vs. LiCrO2 , 2010 .

[44]  Smith,et al.  Soft-x-ray-absorption studies of Tl2Ba2Ca2Cu3O10- delta high-Tc superconductors. , 1992, Physical review. B, Condensed matter.

[45]  Luis Sánchez,et al.  Synthesis and characterization of high-temperature hexagonal P2-Na0.6 MnO2 and its electrochemical behaviour as cathode in sodium cells , 2002 .

[46]  Jiangfeng Qian,et al.  P2-type Na0.67Mn0.65Fe0.2Ni0.15O2 Cathode Material with High-capacity for Sodium-ion Battery , 2014 .

[47]  Junmei Zhao,et al.  Disodium Terephthalate (Na2C8H4O4) as High Performance Anode Material for Low‐Cost Room‐Temperature Sodium‐Ion Battery , 2012 .

[48]  Hiroaki Yoshida,et al.  NaFe0.5Co0.5O2 as high energy and power positive electrode for Na-ion batteries☆ , 2013 .

[49]  Hiroaki Yoshida,et al.  Crystal Structures and Electrode Performance of Alpha-NaFeO2 for Rechargeable Sodium Batteries , 2012 .

[50]  Chunsheng Wang,et al.  Electrochemical Performance of Porous Carbon/Tin Composite Anodes for Sodium‐Ion and Lithium‐Ion Batteries , 2013 .

[51]  Xia Lu,et al.  Sodium Storage and Transport Properties in Layered Na2Ti3O7 for Room‐Temperature Sodium‐Ion Batteries , 2013 .

[52]  Hong Li,et al.  Thermodynamic analysis on energy densities of batteries , 2011 .

[53]  Dong-Hwa Seo,et al.  New iron-based mixed-polyanion cathodes for lithium and sodium rechargeable batteries: combined first principles calculations and experimental study. , 2012, Journal of the American Chemical Society.

[54]  Yuesheng Wang,et al.  Amorphous monodispersed hard carbon micro-spherules derived from biomass as a high performance negative electrode material for sodium-ion batteries , 2015 .

[55]  S. Madhavi,et al.  Layered NaxMnO₂+z in sodium ion batteries-influence of morphology on cycle performance. , 2014, ACS applied materials & interfaces.

[56]  Guohua Chen,et al.  Ultra-small nanoparticles of MgTi2O5 embedded in carbon rods with superior rate performance for sodium ion batteries. , 2015, Chemical communications.

[57]  Wei He,et al.  Synthesis and electrochemical behaviors of layered Na0.67[Mn0.65Co0.2Ni0.15]O2 microflakes as a stable cathode material for sodium-ion batteries , 2013 .

[58]  S. Xu 徐,et al.  Novel copper redox-based cathode materials for room-temperature sodium-ion batteries , 2014 .