Large and extremely low loss: the unique challenges of gravitational wave mirrors.

This paper describes the making of large mirrors for laser interferometer gravitational wave detectors. These optics, working in the near infrared, are among the best optics ever created and played a crucial role in the first direct detection of gravitational waves from black holes or neutron star fusions.

[1]  L. Pinard,et al.  Progress in the measurement and reduction of thermal noise in optical coatings for gravitational-wave detectors. , 2019, Applied optics.

[2]  L. Pinard,et al.  Optical properties of high-quality oxide coating materials used in gravitational-wave advanced detectors , 2019, Journal of Physics: Materials.

[3]  Robert W. Taylor,et al.  The US Program in Ground-Based Gravitational Wave Science: Contribution from the LIGO Laboratory , 2019, 1903.04615.

[4]  M. Evans,et al.  Direct measurement of coating thermal noise in optical resonators , 2018, Physical Review D.

[5]  D. Martynov,et al.  Audio-band coating thermal noise measurement for Advanced LIGO with a multimode optical resonator , 2016, 1609.05595.

[6]  A. Freise,et al.  Interferometer techniques for gravitational-wave detection , 2017, Living reviews in relativity.

[7]  D. Hofman,et al.  Mitigation of the spiral pattern induced by the planetary motion , 2016 .

[8]  Jun Ye,et al.  High-performance near- and mid-infrared crystalline coatings , 2016, 1604.00065.

[9]  L. Pinard,et al.  Mechanical loss in state-of-the-art amorphous optical coatings , 2015, 1511.06172.

[10]  L. Pinard,et al.  Realistic loss estimation due to the mirror surfaces in a 10 meters-long high finesse Fabry-Perot filter-cavity. , 2015, Optics express.

[11]  M. Evans,et al.  Multimaterial coatings with reduced thermal noise , 2014, 1411.3234.

[12]  M. S. Shahriar,et al.  Characterization of the LIGO detectors during their sixth science run , 2014, 1410.7764.

[13]  David E. McClelland,et al.  Achieving resonance in the Advanced LIGO gravitational-wave interferometer , 2014 .

[14]  M. Principe Minimum noise optical coatings for interferometric detectors of gravitational waves , 2014, 2014 IEEE Metrology for Aerospace (MetroAeroSpace).

[15]  Hiroaki Yamamoto,et al.  Sapphire mirror for the KAGRA gravitational wave detector , 2014 .

[16]  R. Adhikari,et al.  Gravitational Radiation Detection with Laser Interferometry , 2013, 1305.5188.

[17]  I. Martin,et al.  Cryogenic measurements of mechanical loss of high-reflectivity coating and estimation of thermal noise. , 2013, Optics letters.

[18]  Wei Zhang,et al.  Tenfold reduction of Brownian noise in high-reflectivity optical coatings , 2013, Nature Photonics.

[19]  Christophe Michel,et al.  Realization of low-loss mirrors with sub-nanometer flatness for future gravitational wave detectors , 2012, Optical Systems Design.

[20]  Eugenio Coccia,et al.  Thermal effects and their compensation in Advanced Virgo , 2012 .

[21]  L. Pinard,et al.  Toward a new generation of low-loss mirrors for the advanced gravitational waves interferometers. , 2011, Optics letters.

[22]  Benno Willke,et al.  The Einstein Telescope: a third-generation gravitational wave observatory , 2010 .

[23]  Jerome Degallaix,et al.  OSCAR a Matlab based optical FFT code , 2010 .

[24]  R. Schilling,et al.  Using the etalon effect for in situ balancing of the Advanced Virgo arm cavities , 2008, 0807.2045.

[25]  Sheila Rowan,et al.  Thermal noise and material issues for gravitational wave detectors , 2005 .

[26]  Thomas Reuter,et al.  Stitching oil-on interferometry of large fused silica blanks , 2005, SPIE Optical Systems Design.

[27]  Martin M. Fejer,et al.  Thermal noise in interferometric gravitational wave detectors due to dielectric optical coatings , 2001, gr-qc/0109073.

[28]  M. Rakhmanov Doppler-induced dynamics of fields in fabry-perot cavities with suspended mirrors. , 2001, Applied Optics.

[29]  Joshua R. Smith,et al.  High quality factor measured in fused silica , 2000, gr-qc/0009035.

[30]  S. R. Wilson,et al.  Neutral Ion Beam Figuring Of Large Optical Surfaces , 1987, Optics & Photonics.

[31]  A. Boccara,et al.  Photothermal deflection spectroscopy and detection. , 1981, Applied optics.

[32]  Tingye Li,et al.  Computation of optical resonator modes by the method of resonance excitation , 1968 .

[33]  J. Weber Detection and Generation of Gravitational Waves , 1960 .

[34]  H. Callen,et al.  Irreversibility and Generalized Noise , 1951 .