Black Phosphorus Rediscovered: From Bulk Material to Monolayers.

Phosphorus is a nonmetal with several allotropes, from the highly reactive white phosphorus to the thermodynamically stable black phosphorus (BP) with a puckered orthorhombic layered structure. The bulk form of BP was first synthesized in 1914, but received little attention until it was rediscovered in 2014 as a member of the new wave of 2D layered nanomaterials. BP can be exfoliated to a single sheet that acts as a semiconductor with a tunable direct band gap, a high carrier mobility at room temperature, and an in-plane anisotropy. The development of BP applications is hampered by surface degradation, thus efforts to achieve effective BP passivation are ongoing, such as its integration in van der Waals heterostructures. BP has been tested as a novel nanomaterial in batteries, transistors, sensors, and photonics. This Review begins with the origin of the BP story, following the path from a bulk material to modern few/single layers. The physical and chemical properties are summarized, and the state-of-the-art of BP applications highlighted.

[1]  M. Pumera,et al.  2D Monoelemental Arsenene, Antimonene, and Bismuthene: Beyond Black Phosphorus , 2017, Advanced materials.

[2]  Wei Ji,et al.  Giant Anisotropic Raman Response of Encapsulated Ultrathin Black Phosphorus by Uniaxial Strain , 2017 .

[3]  Junhong Chen,et al.  Field-effect transistor biosensors with two-dimensional black phosphorus nanosheets. , 2017, Biosensors & bioelectronics.

[4]  Wenhui Wang,et al.  Two-dimensional antimonene single crystals grown by van der Waals epitaxy , 2016, Nature Communications.

[5]  A. Görling,et al.  Noncovalent Functionalization of Black Phosphorus. , 2016, Angewandte Chemie.

[6]  Baoshun Zhang,et al.  Te‐Doped Black Phosphorus Field‐Effect Transistors , 2016, Advanced materials.

[7]  Seung Min Kim,et al.  Ultrastrong Anchoring on the Periodic Atomic Grooves of Black Phosphorus , 2016 .

[8]  L. Dai,et al.  Facile Synthesis of Black Phosphorus: an Efficient Electrocatalyst for the Oxygen Evolving Reaction. , 2016, Angewandte Chemie.

[9]  Robert H. Coridan,et al.  Modellierung, Simulation und Implementierung von Zellen für die solargetriebene Wasserspaltung , 2016 .

[10]  Chengxiang Xiang,et al.  Modeling, Simulation, and Implementation of Solar-Driven Water-Splitting Devices. , 2016, Angewandte Chemie.

[11]  Carmen C. Mayorga-Martinez,et al.  Black Phosphorus Nanoparticle Labels for Immunoassays via Hydrogen Evolution Reaction Mediation. , 2016, Analytical chemistry.

[12]  J. Shapter,et al.  Phosphorene and Phosphorene‐Based Materials – Prospects for Future Applications , 2016, Advanced materials.

[13]  Cong Zhou,et al.  Black Phosphorus Based Photocathodes in Wideband Bifacial Dye‐Sensitized Solar Cells , 2016, Advanced materials.

[14]  Zhi‐Xin Guo,et al.  Strain engineering of magnetic state in vacancy-doped phosphorene , 2016 .

[15]  Joshua B Smith,et al.  Ultra-Long Crystalline Red Phosphorus Nanowires from Amorphous Red Phosphorus Thin Films. , 2016, Angewandte Chemie.

[16]  L. Dai,et al.  Carbon-Based Metal-Free Catalysts for Electrocatalysis beyond the ORR. , 2016, Angewandte Chemie.

[17]  L. Dai,et al.  Kohlenstoffbasierte Metallfreie Katalysatoren für die Elektrokatalyse jenseits der ORR , 2016 .

[18]  Jinlan Wang,et al.  Light-Induced Ambient Degradation of Few-Layer Black Phosphorus: Mechanism and Protection. , 2016, Angewandte Chemie.

[19]  S. Weiss,et al.  Visualizing Light Scattering in Silicon Waveguides with Black Phosphorus Photodetectors , 2016, Advanced materials.

[20]  Kai Zhang,et al.  Selenium-Doped Black Phosphorus for High-Responsivity 2D Photodetectors. , 2016, Small.

[21]  H. Su,et al.  Phosphorene: from theory to applications , 2016 .

[22]  G. Fiori,et al.  Performance of arsenene and antimonene double-gate MOSFETs from first principles , 2016, Nature Communications.

[23]  M. G. Burke,et al.  Nanostructured Aptamer-Functionalized Black Phosphorus Sensing Platform for Label-Free Detection of Myoglobin, a Cardiovascular Disease Biomarker. , 2016, ACS applied materials & interfaces.

[24]  Hua Zhang,et al.  Two-dimensional semiconductors for transistors , 2016 .

[25]  J. Maultzsch,et al.  Few‐Layer Antimonene by Liquid‐Phase Exfoliation , 2016, Angewandte Chemie.

[26]  Jingkun Xu,et al.  Preparation of black phosphorus-PEDOT:PSS hybrid semiconductor composites with good film-forming properties and environmental stability in water containing oxygen , 2016 .

[27]  S. Jadkar,et al.  Temperature dependent Raman spectroscopy of electrochemically exfoliated few layer black phosphorus nanosheets , 2016 .

[28]  Byung Chul Yeo,et al.  A comparative first-principles study of the lithiation, sodiation, and magnesiation of black phosphorus for Li-, Na-, and Mg-ion batteries. , 2016, Physical chemistry chemical physics : PCCP.

[29]  M. Alcamí,et al.  Mechanical Isolation of Highly Stable Antimonene under Ambient Conditions , 2016, Advanced materials.

[30]  R. Arita,et al.  Gate-Tuned Thermoelectric Power in Black Phosphorus. , 2016, Nano letters.

[31]  Jihan Kim,et al.  Superior Chemical Sensing Performance of Black Phosphorus: Comparison with MoS2 and Graphene , 2016, Advanced materials.

[32]  C. Duque,et al.  Twisted bilayer blue phosphorene: A direct band gap semiconductor , 2016, 1607.08831.

[33]  K. Novoselov,et al.  2D materials and van der Waals heterostructures , 2016, Science.

[34]  E. Aktürk,et al.  Single and bilayer bismuthene: stability at high temperature and mechanical and electronic properties , 2016 .

[35]  Qingchi Xu,et al.  Synthesis of hybrid nanocomposites of ZIF-8 with two-dimensional black phosphorus for photocatalysis , 2016 .

[36]  Jian Wang,et al.  Impact of edge states on device performance of phosphorene heterojunction tunneling field effect transistors. , 2016, Nanoscale.

[37]  W. Mi,et al.  Prediction of spin-dependent electronic structure in 3d-transition-metal doped antimonene , 2016 .

[38]  X. Duan,et al.  Van der Waals heterostructures and devices , 2016 .

[39]  Yang Huang,et al.  Unexpected electronic structure of the alloyed and doped arsenene sheets: First-Principles calculations , 2016, Scientific Reports.

[40]  Xianfan Xu,et al.  Auxetic Black Phosphorus: A 2D Material with Negative Poisson's Ratio. , 2016, Nano letters.

[41]  Qingsheng Zeng,et al.  Black Phosphorus Nanosheets: Synthesis, Characterization and Applications. , 2016, Small.

[42]  Haibo Zeng,et al.  Lateral black phosphorene P–N junctions formed via chemical doping for high performance near-infrared photodetector , 2016 .

[43]  Swastika Banerjee,et al.  Anodic performance of black phosphorus in magnesium-ion batteries: the significance of Mg-P bond-synergy. , 2016, Chemical communications.

[44]  W. Yoo,et al.  Passivated ambipolar black phosphorus transistors. , 2016, Nanoscale.

[45]  Jun Lin,et al.  Integration of Upconversion Nanoparticles and Ultrathin Black Phosphorus for Efficient Photodynamic Theranostics under 808 nm Near-Infrared Light Irradiation , 2016 .

[46]  Yi Shi,et al.  Supercritical carbon dioxide-assisted rapid synthesis of few-layer black phosphorus for hydrogen peroxide sensing. , 2016, Biosensors & bioelectronics.

[47]  H. Zeng,et al.  Semiconductor-topological insulator transition of two-dimensional SbAs induced by biaxial tensile strain , 2016 .

[48]  Shuaipeng Ge,et al.  Intense, stable and excitation wavelength-independent photoluminescence emission in the blue-violet region from phosphorene quantum dots , 2016, Scientific Reports.

[49]  R. Sankar,et al.  Tunable Photoinduced Carrier Transport of a Black Phosphorus Transistor with Extended Stability Using a Light-Sensitized Encapsulated Layer , 2016 .

[50]  E. Pop,et al.  Electrical and Thermoelectric Transport by Variable Range Hopping in Thin Black Phosphorus Devices. , 2016, Nano letters.

[51]  Zhichuan J. Xu,et al.  An Air‐Stable Densely Packed Phosphorene–Graphene Composite Toward Advanced Lithium Storage Properties , 2016 .

[52]  Zonghai Chen,et al.  Nanostructured Black Phosphorus/Ketjenblack-Multiwalled Carbon Nanotubes Composite as High Performance Anode Material for Sodium-Ion Batteries. , 2016, Nano letters.

[53]  X. Wan,et al.  First-principles study of thermal expansion and thermomechanics of single-layer black and blue phosphorus , 2016 .

[54]  K. Ang,et al.  Interface Engineering for the Enhancement of Carrier Transport in Black Phosphorus Transistor with Ultra-Thin High-k Gate Dielectric , 2016, Scientific Reports.

[55]  J. Chen,et al.  Ultrafast Preparation of Black Phosphorus Quantum Dots for Efficient Humidity Sensing. , 2016, Chemistry.

[56]  W. Luo,et al.  Two-Dimensional Phosphorus Oxides as Energy and Information Materials. , 2016, Angewandte Chemie.

[57]  A. Srivastava,et al.  Large Area Fabrication of Semiconducting Phosphorene by Langmuir-Blodgett Assembly , 2016, Scientific Reports.

[58]  G. Schatz,et al.  Covalent functionalization and passivation of exfoliated black phosphorus via aryl diazonium chemistry. , 2016, Nature chemistry.

[59]  Sean Li,et al.  Electronic and Magnetic Properties of Transition-Metal-Doped Monolayer Black Phosphorus by Defect Engineering , 2016 .

[60]  Xiaodong Chen,et al.  Wet‐Chemical Processing of Phosphorus Composite Nanosheets for High‐Rate and High‐Capacity Lithium‐Ion Batteries , 2016 .

[61]  S. Campbell,et al.  Revealing the Origins of 3D Anisotropic Thermal Conductivities of Black Phosphorus , 2016 .

[62]  D. Late Liquid exfoliation of black phosphorus nanosheets and its application as humidity sensor , 2016 .

[63]  Mingqiang Huang,et al.  Broadband Black‐Phosphorus Photodetectors with High Responsivity , 2016, Advanced materials.

[64]  E. Hwang,et al.  Black phosphorus nonvolatile transistor memory. , 2016, Nanoscale.

[65]  D. Late,et al.  Humidity Sensing and Photodetection Behavior of Electrochemically Exfoliated Atomically Thin-Layered Black Phosphorus Nanosheets. , 2016, ACS applied materials & interfaces.

[66]  Hao‐Li Zhang,et al.  Partial Oxidized Arsenene: Emerging Tunable Direct Bandgap Semiconductor , 2016, Scientific Reports.

[67]  P. Cao,et al.  Black Phosphorus Based Field Effect Transistors with Simultaneously Achieved Near Ideal Subthreshold Swing and High Hole Mobility at Room Temperature , 2016, Scientific Reports.

[68]  P. Chu,et al.  Surface Coordination of Black Phosphorus for Robust Air and Water Stability. , 2016, Angewandte Chemie.

[69]  M. Engel,et al.  High-Performance p-Type Black Phosphorus Transistor with Scandium Contact. , 2016, ACS nano.

[70]  Le Cai,et al.  Black Phosphorus Schottky Diodes: Channel Length Scaling and Application as Photodetectors , 2016 .

[71]  Zhisheng Zhao,et al.  Flexible All‐Solid‐State Supercapacitors based on Liquid‐Exfoliated Black‐Phosphorus Nanoflakes , 2016, Advanced materials.

[72]  N. Hine,et al.  Multipurpose Black-Phosphorus/hBN Heterostructures. , 2016, Nano letters.

[73]  Jing Lu,et al.  Monolayer Phosphorene–Metal Contacts , 2016 .

[74]  Hao Jiang,et al.  Black Phosphorus Mid-Infrared Photodetectors with High Gain. , 2016, Nano letters.

[75]  Jiangbin Wu,et al.  Review on the Raman spectroscopy of different types of layered materials. , 2016, Nanoscale.

[76]  Y. Li,et al.  Tunable electronic and magnetic properties of two‐dimensional materials and their one‐dimensional derivatives , 2016, Wiley interdisciplinary reviews. Computational molecular science.

[77]  Litao Sun,et al.  Visualizing the Electrochemical Lithiation/Delithiation Behaviors of Black Phosphorus by in Situ Transmission Electron Microscopy , 2016 .

[78]  Mohammad Ziaur Rahman,et al.  2D phosphorene as a water splitting photocatalyst: fundamentals to applications , 2016 .

[79]  E. Hwang,et al.  Probing Out-of-Plane Charge Transport in Black Phosphorus with Graphene-Contacted Vertical Field-Effect Transistors. , 2016, Nano letters.

[80]  Rostislav A. Doganov,et al.  Electron Doping of Ultrathin Black Phosphorus with Cu Adatoms. , 2016, Nano letters.

[81]  Sang-Hyun Oh,et al.  Fundamental Limits on the Subthreshold Slope in Schottky Source/Drain Black Phosphorus Field-Effect Transistors. , 2016, ACS nano.

[82]  Koichi Yamashita,et al.  Black Phosphorus as a High-Capacity, High-Capability Negative Electrode for Sodium-Ion Batteries: Investigation of the Electrode/Electrolyte Interface , 2016 .

[83]  M. Pumera,et al.  Layered Black Phosphorus: Strongly Anisotropic Magnetic, Electronic, and Electron-Transfer Properties. , 2016, Angewandte Chemie.

[84]  U. Farooq,et al.  Graphene/phosphorene bilayer: High electron speed, optical property and semiconductor-metal transition with electric field , 2016 .

[85]  Bo Chen,et al.  2D Transition‐Metal‐Dichalcogenide‐Nanosheet‐Based Composites for Photocatalytic and Electrocatalytic Hydrogen Evolution Reactions , 2016, Advanced materials.

[86]  M. Zdrojek,et al.  Temperature Evolution of Phonon Properties in Few-Layer Black Phosphorus , 2016 .

[87]  Bo Xu,et al.  Tuning carrier mobility of phosphorene nanoribbons by edge passivation and strain , 2016 .

[88]  W. Knap,et al.  Efficient Terahertz detection in black-phosphorus nano-transistors with selective and controllable plasma-wave, bolometric and thermoelectric response , 2016, Scientific Reports.

[89]  P. Ye,et al.  Mechanisms of current fluctuation in ambipolar black phosphorus field-effect transistors. , 2016, Nanoscale.

[90]  S. Lau,et al.  Solution‐Processable Ultrathin Black Phosphorus as an Effective Electron Transport Layer in Organic Photovoltaics , 2016 .

[91]  Y. Chang,et al.  Long-term stability study of graphene-passivated black phosphorus under air exposure , 2016 .

[92]  Y. Lin,et al.  Effect of incorporation of black phosphorus into PEDOT:PSS on conductivity and electron–phonon coupling , 2016 .

[93]  H. Zeng,et al.  Semiconducting Group 15 Monolayers: A Broad Range of Band Gaps and High Carrier Mobilities. , 2016, Angewandte Chemie.

[94]  Zongfu Yu,et al.  Producing air-stable monolayers of phosphorene and their defect engineering , 2016, Nature Communications.

[95]  Amos Martinez,et al.  Optical modulators with 2D layered materials , 2016, Nature Photonics.

[96]  June Yeong Lim,et al.  Black Phosphorus-Zinc Oxide Nanomaterial Heterojunction for p-n Diode and Junction Field-Effect Transistor. , 2016, Nano letters.

[97]  M. Pumera,et al.  Few-layer black phosphorus nanoparticles. , 2016, Chemical communications.

[98]  Li‐Min Liu,et al.  Phosphorene ribbons as anode materials with superhigh rate and large capacity for Li-ion batteries , 2016 .

[99]  Gerhard Klimeck,et al.  Few-layer Phosphorene: An Ideal 2D Material For Tunnel Transistors , 2015, Scientific Reports.

[100]  Jundong Shao,et al.  From Black Phosphorus to Phosphorene: Basic Solvent Exfoliation, Evolution of Raman Scattering, and Applications to Ultrafast Photonics , 2015 .

[101]  Xiangfan Xu,et al.  Nonvolatile Floating‐Gate Memories Based on Stacked Black Phosphorus–Boron Nitride–MoS2 Heterostructures , 2015 .

[102]  R. Ruoff,et al.  Interaction of black phosphorus with oxygen and water , 2015, 1511.09201.

[103]  Kaiyou Wang,et al.  Charge trap memory based on few-layer black phosphorus. , 2015, Nanoscale.

[104]  Carmen C. Mayorga-Martinez,et al.  Layered Black Phosphorus as a Selective Vapor Sensor. , 2015, Angewandte Chemie.

[105]  M. Serrano-Ruiz,et al.  The Role of Water in the Preparation and Stabilization of High‐Quality Phosphorene Flakes , 2015, Advanced materials interfaces.

[106]  Guangyuan Zheng,et al.  A phosphorene-graphene hybrid material as a high-capacity anode for sodium-ion batteries. , 2015, Nature nanotechnology.

[107]  B. Luan,et al.  Revealing the importance of surface morphology of nanomaterials to biological responses: Adsorption of the villin headpiece onto graphene and phosphorene , 2015 .

[108]  Dongzhi Zhang,et al.  Air-Stable Black Phosphorus Devices for Ion Sensing. , 2015, ACS applied materials & interfaces.

[109]  Beiju Huang,et al.  Thickness-dependent Raman spectra, transport properties and infrared photoresponse of few-layer black phosphorus , 2015 .

[110]  Shun Mao,et al.  Ultrahigh sensitivity and layer-dependent sensing performance of phosphorene-based gas sensors , 2015, Nature Communications.

[111]  Chongwu Zhou,et al.  Mechanical and Electrical Anisotropy of Few-Layer Black Phosphorus. , 2015, ACS nano.

[112]  Dominique Coquillat,et al.  Black Phosphorus Terahertz Photodetectors , 2015, Advanced materials.

[113]  Fatemeh Khalili-Araghi,et al.  Stable and Selective Humidity Sensing Using Stacked Black Phosphorus Flakes. , 2015, ACS nano.

[114]  D. Cahill,et al.  Anisotropic Thermal Conductivity of Exfoliated Black Phosphorus , 2015, Advanced materials.

[115]  M. Pumera,et al.  The Cytotoxicity of Layered Black Phosphorus. , 2015, Chemistry.

[116]  Jiaguo Yu,et al.  Graphene-Based Photocatalysts for Solar-Fuel Generation. , 2015, Angewandte Chemie.

[117]  Young Tack Lee,et al.  Nonvolatile Ferroelectric Memory Circuit Using Black Phosphorus Nanosheet-Based Field-Effect Transistors with P(VDF-TrFE) Polymer. , 2015, ACS nano.

[118]  Quanjun Xiang,et al.  Photokatalysatoren auf Graphenbasis für die Produktion von Solarbrennstoffen , 2015 .

[119]  P. Chu,et al.  Ultrasmall Black Phosphorus Quantum Dots: Synthesis and Use as Photothermal Agents. , 2015, Angewandte Chemie.

[120]  Shen Lai,et al.  Plasma-Treated Thickness-Controlled Two-Dimensional Black Phosphorus and Its Electronic Transport Properties. , 2015, ACS nano.

[121]  H. J. Liu,et al.  High thermoelectric performance can be achieved in black phosphorus , 2015, 1508.06834.

[122]  Yi Xie,et al.  Ultrathin Black Phosphorus Nanosheets for Efficient Singlet Oxygen Generation. , 2015, Journal of the American Chemical Society.

[123]  Dewei Chu,et al.  Recent developments in black phosphorus transistors , 2015 .

[124]  P. Jeon,et al.  Dual Gate Black Phosphorus Field Effect Transistors on Glass for NOR Logic and Organic Light Emitting Diode Switching. , 2015, Nano letters.

[125]  F. Xia,et al.  Synthesis of thin-film black phosphorus on a flexible substrate , 2015, 1508.05171.

[126]  Richard Martel,et al.  Photooxidation and quantum confinement effects in exfoliated black phosphorus. , 2015, Nature materials.

[127]  Du Xiang,et al.  Colossal Ultraviolet Photoresponsivity of Few-Layer Black Phosphorus. , 2015, ACS nano.

[128]  S. Chae,et al.  High-performance n-type black phosphorus transistors with type control via thickness and contact-metal engineering , 2015, Nature Communications.

[129]  S. Lau,et al.  Field‐Effect Transistors Based on Amorphous Black Phosphorus Ultrathin Films by Pulsed Laser Deposition , 2015, Advanced materials.

[130]  M. Fuhrer,et al.  Creating a Stable Oxide at the Surface of Black Phosphorus. , 2015, ACS applied materials & interfaces.

[131]  Seungchul Kim,et al.  Unraveling the Atomistic Sodiation Mechanism of Black Phosphorus for Sodium Ion Batteries by First-Principles Calculations , 2015 .

[132]  Chien-Cheng Chang,et al.  Anisotropic thermal transport in phosphorene: effects of crystal orientation. , 2015, Nanoscale.

[133]  P. Ye,et al.  Al2O3 on Black Phosphorus by Atomic Layer Deposition: An in Situ Interface Study. , 2015, ACS applied materials & interfaces.

[134]  Tengfei Cao,et al.  Structures, stabilities, and electronic properties of defects in monolayer black phosphorus , 2015, Scientific Reports.

[135]  M. Ge,et al.  Black Arsenic–Phosphorus: Layered Anisotropic Infrared Semiconductors with Highly Tunable Compositions and Properties , 2015, Advanced materials.

[136]  M. Kamalakar,et al.  Low Schottky barrier black phosphorus field-effect devices with ferromagnetic tunnel contacts. , 2015, Small.

[137]  Wei Huang,et al.  Black phosphorus quantum dots. , 2015, Angewandte Chemie.

[138]  R. L. Moreira,et al.  Unusual angular dependence of the Raman response in black phosphorus. , 2015, ACS nano.

[139]  M. Pumera,et al.  Voltammetry of Layered Black Phosphorus: Electrochemistry of Multilayer Phosphorene , 2015 .

[140]  Linda F Nazar,et al.  The emerging chemistry of sodium ion batteries for electrochemical energy storage. , 2015, Angewandte Chemie.

[141]  Dipan Kundu,et al.  Natriumionenbatterien für die elektrochemische Energiespeicherung , 2015 .

[142]  Bo Xu,et al.  Unexpected Magnetic Semiconductor Behavior in Zigzag Phosphorene Nanoribbons Driven by Half-Filled One Dimensional Band , 2015, Scientific Reports.

[143]  Young-Chul Lee,et al.  Stable semiconductor black phosphorus (BP)@titanium dioxide (TiO2) hybrid photocatalysts , 2015, Scientific Reports.

[144]  D. Akinwande,et al.  Flexible black phosphorus ambipolar transistors, circuits and AM demodulator. , 2015, Nano letters.

[145]  H. Zeng,et al.  Atomically thin arsenene and antimonene: semimetal-semiconductor and indirect-direct band-gap transitions. , 2015, Angewandte Chemie.

[146]  M. Pumera,et al.  Light and atmosphere affect the Quasi-equilibrium states of graphite oxide and graphene oxide powders. , 2015, Small.

[147]  Mohammad Asadi,et al.  High‐Quality Black Phosphorus Atomic Layers by Liquid‐Phase Exfoliation , 2015, Advanced materials.

[148]  A. Glushenkov,et al.  Phosphorus–carbon nanocomposite anodes for lithium-ion and sodium-ion batteries , 2015 .

[149]  Alan J. H. McGaughey,et al.  Strongly anisotropic in-plane thermal transport in single-layer black phosphorene , 2015, Scientific Reports.

[150]  Hua Xu,et al.  Identifying the crystalline orientation of black phosphorus using angle-resolved polarized Raman spectroscopy. , 2015, Angewandte Chemie.

[151]  M. Hersam,et al.  In Situ Thermal Decomposition of Exfoliated Two-Dimensional Black Phosphorus. , 2015, The journal of physical chemistry letters.

[152]  Jimmy C. Yu,et al.  A black–red phosphorus heterostructure for efficient visible-light-driven photocatalysis , 2015 .

[153]  Sharath Sriram,et al.  Elemental analogues of graphene: silicene, germanene, stanene, and phosphorene. , 2015, Small.

[154]  R. Dronskowski,et al.  Van der Waals interactions in selected allotropes of phosphorus , 2015 .

[155]  Yong-Wei Zhang,et al.  Energetics, Charge Transfer, and Magnetism of Small Molecules Physisorbed on Phosphorene , 2015, 1501.05059.

[156]  Jun Wang,et al.  Liquid exfoliation of solvent-stabilized few-layer black phosphorus for applications beyond electronics , 2015, Nature Communications.

[157]  Deji Akinwande,et al.  Two-dimensional flexible nanoelectronics , 2014, Nature Communications.

[158]  Rostislav A. Doganov,et al.  Transport properties of pristine few-layer black phosphorus by van der Waals passivation in an inert atmosphere , 2014, Nature Communications.

[159]  A. Neto,et al.  Air-stable transport in graphene-contacted, fully encapsulated ultrathin black phosphorus-based field-effect transistors. , 2014, ACS nano.

[160]  Li Tao,et al.  Toward air-stable multilayer phosphorene thin-films and transistors , 2014, Scientific Reports.

[161]  X. Zhou,et al.  Landau levels and magneto-transport property of monolayer phosphorene , 2014, Scientific Reports.

[162]  A. Zunger,et al.  Switching a normal insulator into a topological insulator via electric field with application to phosphorene. , 2014, Nano letters.

[163]  L. Lauhon,et al.  Effective passivation of exfoliated black phosphorus transistors against ambient degradation. , 2014, Nano letters.

[164]  Aaron M. Jones,et al.  Highly anisotropic and robust excitons in monolayer black phosphorus. , 2014, Nature nanotechnology.

[165]  Gyu-Tae Kim,et al.  Few-layer black phosphorus field-effect transistors with reduced current fluctuation. , 2014, ACS nano.

[166]  P. Ye,et al.  Semiconducting black phosphorus: synthesis, transport properties and electronic applications. , 2014, Chemical Society reviews.

[167]  R. Ahuja,et al.  Strain Engineering for Phosphorene: The Potential Application as a Photocatalyst , 2014, 1410.7123.

[168]  Marcel Demarteau,et al.  Ambipolar phosphorene field effect transistor. , 2014, ACS nano.

[169]  A. Pfitzner,et al.  Die erweiterte Stabilitätsreihe der Phosphorallotrope , 2014 .

[170]  R. Dronskowski,et al.  The extended stability range of phosphorus allotropes. , 2014, Angewandte Chemie.

[171]  Hao Jiang,et al.  Black phosphorus radio-frequency transistors. , 2014, Nano letters.

[172]  Yan Li,et al.  Modulation of the Electronic Properties of Ultrathin Black Phosphorus by Strain and Electrical Field , 2014 .

[173]  Martin Pumera,et al.  Layered transition-metal dichalcogenides (MoS2 and WS2) for sensing and biosensing , 2014 .

[174]  Yong-Wei Zhang,et al.  Layer-dependent Band Alignment and Work Function of Few-Layer Phosphorene , 2014, Scientific Reports.

[175]  X. Zeng,et al.  Structure and stability of two dimensional phosphorene with O or NH functionalization , 2014, 1409.7719.

[176]  Nathan Youngblood,et al.  Waveguide-integrated black phosphorus photodetector with high responsivity and low dark current , 2014, Nature Photonics.

[177]  Harold S. Park,et al.  A Stillinger-Weber potential for single-layered black phosphorus, and the importance of cross-pucker interactions for a negative Poisson's ratio and edge stress-induced bending. , 2014, Nanoscale.

[178]  Bo Xu,et al.  Tunable Magnetic Semiconductor Behavior Driven by Half-Filled One Dimensional Band in Zigzag Phosphorene Nanoribbons , 2014, 1409.4134.

[179]  Gang Zhang,et al.  Coexistence of size-dependent and size-independent thermal conductivities in phosphorene , 2014, 1409.1967.

[180]  Z. Ong,et al.  Strong Thermal Transport Anisotropy and Strain Modulation in Single-Layer Phosphorene , 2014, 1409.0974.

[181]  G. Su,et al.  Anisotropic intrinsic lattice thermal conductivity of phosphorene from first principles. , 2014, Physical chemistry chemical physics : PCCP.

[182]  S. Karna,et al.  Phosphorene oxide: stability and electronic properties of a novel two-dimensional material. , 2014, Nanoscale.

[183]  M. Zare,et al.  Scaling laws of band gaps of phosphorene nanoribbons: A tight-binding calculation , 2014, 1408.6249.

[184]  A. Ramasubramaniam,et al.  Ab initio studies of thermodynamic and electronic properties of phosphorene nanoribbons , 2014 .

[185]  P. Ye,et al.  Device perspective for black phosphorus field-effect transistors: contact resistance, ambipolar behavior, and scaling. , 2014, ACS nano.

[186]  Wei Kang,et al.  The potential application of phosphorene as an anode material in Li-ion batteries , 2014, 1408.3488.

[187]  D. Coker,et al.  Oxygen defects in phosphorene. , 2014, Physical review letters.

[188]  Guangyuan Zheng,et al.  Formation of stable phosphorus-carbon bond for enhanced performance in black phosphorus nanoparticle-graphite composite battery anodes. , 2014, Nano letters.

[189]  Xiaoyu Han,et al.  Strain and orientation modulated bandgaps and effective masses of phosphorene nanoribbons. , 2014, Nano letters.

[190]  Zhixian Zhou,et al.  Polarized photocurrent response in black phosphorus field-effect transistors. , 2014, Nanoscale.

[191]  G. Steele,et al.  Photovoltaic effect in few-layer black phosphorus PN junctions defined by local electrostatic gating , 2014, Nature Communications.

[192]  M. Engel,et al.  Black phosphorus photodetector for multispectral, high-resolution imaging. , 2014, Nano letters.

[193]  Zhen Zhu,et al.  Phase coexistence and metal-insulator transition in few-layer phosphorene: a computational study. , 2014, Physical review letters.

[194]  Li Yang,et al.  Lattice Vibrational Modes and Raman Scattering Spectra of Strained Phosphorene , 2014, 1407.0736.

[195]  Zongfu Yu,et al.  Extraordinary photoluminescence and strong temperature/angle-dependent Raman responses in few-layer phosphorene. , 2014, ACS nano.

[196]  T. Nilges,et al.  Access and in situ growth of phosphorene-precursor black phosphorus , 2014, 1406.7275.

[197]  Y. Sun,et al.  Enhanced thermoelectric performance of phosphorene by strain-induced band convergence , 2014, 1406.5272.

[198]  T. Frauenheim,et al.  Phosphorene as a Superior Gas Sensor: Selective Adsorption and Distinct I-V Response. , 2014, The journal of physical chemistry letters.

[199]  Gang Su,et al.  Hinge-like structure induced unusual properties of black phosphorus and new strategies to improve the thermoelectric performance , 2014, Scientific Reports.

[200]  H. J. Liu,et al.  Phosphorene nanoribbon as a promising candidate for thermoelectric applications , 2014, Scientific Reports.

[201]  Ryan Soklaski,et al.  Enhanced thermoelectric efficiency via orthogonal electrical and thermal conductances in phosphorene. , 2014, Nano letters.

[202]  Zhenhua Ni,et al.  Plasma-assisted fabrication of monolayer phosphorene and its Raman characterization , 2014, Nano Research.

[203]  Mikhail I. Katsnelson,et al.  Quasiparticle band structure and tight-binding model for single- and bilayer black phosphorus , 2014, 1404.0618.

[204]  Jun Dai,et al.  Bilayer Phosphorene: Effect of Stacking Order on Bandgap and Its Potential Applications in Thin-Film Solar Cells. , 2014, The journal of physical chemistry letters.

[205]  Harold S. Park,et al.  Negative poisson’s ratio in single-layer black phosphorus , 2014, Nature Communications.

[206]  Xihong Peng,et al.  Strain-engineered direct-indirect band gap transition and its mechanism in two-dimensional phosphorene , 2014, 1403.3771.

[207]  Li Yang,et al.  Strain-engineering the anisotropic electrical conductance of few-layer black phosphorus. , 2014, Nano letters.

[208]  Li Yang,et al.  Strain-Engineering Anisotropic Electrical Conductance of Phosphorene , 2014 .

[209]  G. Steele,et al.  Isolation and characterization of few-layer black phosphorus , 2014, 1403.0499.

[210]  G. Steele,et al.  Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors. , 2014, Nano letters.

[211]  R. Soklaski,et al.  Layer-Controlled Band Gap and Anisotropic Excitons in Phosphorene , 2014, 1402.4192.

[212]  L. Lauhon,et al.  Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides. , 2014, ACS nano.

[213]  Likai Li,et al.  Black phosphorus field-effect transistors. , 2014, Nature nanotechnology.

[214]  Xianfan Xu,et al.  Phosphorene: an unexplored 2D semiconductor with a high hole mobility. , 2014, ACS nano.

[215]  A S Rodin,et al.  Strain-induced gap modification in black phosphorus. , 2014, Physical review letters.

[216]  V. M. Ghete,et al.  Evidence of b-jet quenching in PbPb collisions at √(s(NN))=2.76  TeV. , 2013, Physical review letters.

[217]  A. Hohmann,et al.  Synthesis and Phase Relations of Single‐Phase Fibrous Phosphorus , 2013 .

[218]  M. Winter,et al.  Puzzling out the origin of the electrochemical activity of black P as a negative electrode material for lithium-ion batteries , 2013 .

[219]  John B Goodenough,et al.  The Li-ion rechargeable battery: a perspective. , 2013, Journal of the American Chemical Society.

[220]  M. Pumera,et al.  Impurities in graphenes and carbon nanotubes and their influence on the redox properties , 2012 .

[221]  X. Jia,et al.  Synthesis and characterization of hexagonal boron nitride film as a dielectric layer for graphene devices. , 2012, ACS nano.

[222]  Haiming Xie,et al.  Electrochemical Activity of Black Phosphorus as an Anode Material for Lithium-Ion Batteries , 2012 .

[223]  H. Salavagione,et al.  Graphene functionalisation with a conjugated poly(fluorene) by click coupling: striking electronic properties in solution. , 2012, Chemistry.

[224]  R. Weihrich,et al.  Synthese und Identifizierung metastabiler Verbindungen: schwarzes Arsen – Fiktion oder Wirklichkeit? , 2012 .

[225]  P. Schmidt,et al.  Synthesis and identification of metastable compounds: black arsenic--science or fiction? , 2012, Angewandte Chemie.

[226]  M. Jaroniec,et al.  Graphene-based semiconductor photocatalysts. , 2012, Chemical Society reviews.

[227]  Jae-Hun Kim,et al.  Li-alloy based anode materials for Li secondary batteries. , 2010, Chemical Society reviews.

[228]  T. Nilges,et al.  A fast low-pressure transport route to large black phosphorus single crystals , 2008 .

[229]  H. Sohn,et al.  Black Phosphorus and its Composite for Lithium Rechargeable Batteries , 2007 .

[230]  Andre K. Geim,et al.  The rise of graphene. , 2007, Nature materials.

[231]  Richard G Compton,et al.  Oxygenated edge plane sites slow the electron transfer of the ferro-/ferricyanide redox couple at graphite electrodes. , 2006, Chemphyschem : a European journal of chemical physics and physical chemistry.

[232]  K. Domen,et al.  Photocatalyst releasing hydrogen from water , 2006, Nature.

[233]  A. Pfitzner Phosphor bleibt spannend , 2006 .

[234]  A. Pfitzner Phosphorus remains exciting! , 2006, Angewandte Chemie.

[235]  G. Seifert,et al.  Fibrous red phosphorus. , 2005, Angewandte Chemie.

[236]  Michael Ruck,et al.  Faserförmiger roter Phosphor , 2005 .

[237]  U. Varadaraju,et al.  Electrochemical reaction of lithium with Zn3P2 , 2005 .

[238]  R. Dinnebier,et al.  The crystal structure of γ-P4, a low temperature modification of white phosphorus , 2005 .

[239]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[240]  G. Brunklaus,et al.  Phosphorus nanorods--two allotropic modifications of a long-known element. , 2004, Angewandte Chemie.

[241]  A. Pfitzner,et al.  (CuI)3P12: A Solid Containing a New Polymer of Phosphorus Predicted by Theory , 1995 .

[242]  A. Pfitzner,et al.  (CuI)3P12: ein Festkörper mit einer neuartigen, theoretisch vorhergesagten Form des Phosphors , 1995 .

[243]  Marco Häser,et al.  Covalent Structures of Phosphorus: A Comprehensive Theoretical Study , 1995 .

[244]  N. Miura,et al.  Magnetotransport investigations on black phosphorus at low temperatures , 1994 .

[245]  A. Morita,et al.  Preparation of Black Phosphorus Single Crystals by a Completely Closed Bismuth-Flux Method and Their Crystal Morphology , 1989 .

[246]  A. J. Dann,et al.  Electrical conductivity of black phosphorus-silicon compound , 1989 .

[247]  C. Koch,et al.  Mechanical alloying of brittle materials , 1988 .

[248]  P. O'hare,et al.  Thermodynamic stability of orthorhombic black phosphorus , 1988 .

[249]  T. Inabe,et al.  Synthesis and characterization of black phosphorus intercalation compounds , 1987 .

[250]  Y. Akahama,et al.  Electrical properties of single-crystal black phosphorus under pressure , 1986 .

[251]  A. Morita,et al.  Semiconducting black phosphorus , 1986 .

[252]  S. Sugai,et al.  Raman and infrared reflection spectroscopy in black phosphorus , 1985 .

[253]  K. Tachikawa,et al.  Anomalous superconductivity in black phosphorus under high pressures , 1984 .

[254]  Shoichi Endo,et al.  Electrical Properties of Black Phosphorus Single Crystals , 1983 .

[255]  S. Suga,et al.  Electrical and optical properties of black phosphorus single crystals , 1983 .

[256]  Y. Maruyama,et al.  Optical reflectivity and band structure of black phosphorus , 1983 .

[257]  Y. Maruyama,et al.  Electronic structure of black phosphorus studied by X-ray photoelectron spectroscopy , 1982 .

[258]  G. Shirane,et al.  Inelastic neutron scattering study of acoustic phonons of black phosphorus , 1982 .

[259]  Y. Akahama,et al.  Growth of Large Single Crystals of Black Phosphorus under High Pressure , 1982 .

[260]  直樹 佐藤,et al.  高温,高圧下における黒リンの合成,単結晶の育成とその物理的および化学的性質 , 1981 .

[261]  H. Krebs,et al.  Über Struktur und Eigenschaften der Halbmetalle. XXII. Die Kristallstruktur des Hittorfschen Phosphors , 1969 .

[262]  H. Krebs,et al.  Die Kristallstruktur des Hittorfschen Phosphors , 1966 .

[263]  H. Thurn,et al.  Crystal Structure of Violet Phosphorus , 1966 .

[264]  S. Rundqvist,et al.  Refinement of the crystal structure of black phosphorus , 1965 .

[265]  H. Krebs,et al.  Über die Struktur und Eigenschaften der Halbmetalle. VIII. Die katalytische Darstellung des schwarzen Phosphors , 1955 .

[266]  R. Keyes The Electrical Properties of Black Phosphorus , 1953 .

[267]  T. W. DeWitt,et al.  Conversion of Liquid White Phosphorus to Red Phosphorus. I. Kinetics of the Reaction1 , 1946 .

[268]  Paul Gesslle,et al.  Darstellung und Stabilit?tsverh?ltnisse von schwarzem Phosphor , 1943 .

[269]  P. W. Bridgman FURTHER NOTE ON BLACK PHOSPHORUS. , 1916 .

[270]  P. W. Bridgman TWO NEW MODIFICATIONS OF PHOSPHORUS. , 1914 .

[271]  P. W. Bridgman Reversible Transitions between Solids at High Pressures , 1914 .

[272]  Jing Chen,et al.  Scalable Clean Exfoliation of High‐Quality Few‐Layer Black Phosphorus for a Flexible Lithium Ion Battery , 2016, Advanced materials.

[273]  H. Park,et al.  Black Phosphorus (BP) Nanodots for Potential Biomedical Applications. , 2016, Small.

[274]  Ruiping Liu,et al.  Phosphorene nanoribbons: Passivation effect on bandgap and effective mass , 2015 .

[275]  O. Malyi,et al.  Electronic Supplementary Information Adsorption of Metal Adatoms on Single-Layer Phosphorene , 2014 .

[276]  Xianfan Xu,et al.  Phosphorene: An Unexplored 2D Semiconductor with a High Hole , 2014 .

[277]  S. Suga,et al.  Valence band and core-level photoemission spectra of black phosphorus single crystals , 1983 .

[278]  Rachid Yazami,et al.  A reversible graphite-lithium negative electrode for electrochemical generators , 1983 .

[279]  S. S. Boksha Equipment for the growth of crystals at very high gas pressures , 1968 .

[280]  W. Hittorf Zur Kenntniss des Phosphors , 1865 .

[281]  Supplementary Figures , 2022 .

[282]  Supplementary Information Supplementary Figures , 2022 .