Constraining the Venus Interior Structure with Future VERITAS Measurements of the Gravitational Atmospheric Loading
暂无分享,去创建一个
S. Smrekar | E. Mazarico | S. Goossens | J. Renaud | L. Iess | D. Durante | G. Cascioli
[1] J. Barriot,et al. Possible Deep Structure and Composition of Venus With Respect to the Current Knowledge From Geodetic Data , 2021, Journal of Geophysical Research: Planets.
[2] G. Tobie,et al. Solid tides in Io’s partially molten interior , 2021, Astronomy & Astrophysics.
[3] D. Campbell,et al. Spin state and moment of inertia of Venus , 2021, Nature Astronomy.
[4] A. Fienga,et al. Gravity, Geodesy and Fundamental Physics with BepiColombo’s MORE Investigation , 2021 .
[5] É. Bolmont,et al. Solid tidal friction in multi-layer planets: Application to Earth, Venus, a Super Earth and the TRAPPIST-1 planets , 2020, Astronomy & Astrophysics.
[6] G. Piccioni,et al. Validation of the IPSL Venus GCM Thermal Structure with Venus Express Data , 2019, Atmosphere.
[7] K. Gorski,et al. Gravitational signatures of atmospheric thermal tides on Venus , 2019, Icarus.
[8] S. Lebonnois,et al. Latitudinal variation of clouds’ structure responsible for Venus’ cold collar , 2018, Icarus.
[9] S. Werner,et al. Inferences on the mantle viscosity structure and the post-overturn evolutionary state of Venus , 2018, Icarus.
[10] P. Tackley,et al. Prospects for an ancient dynamo and modern crustal remanent magnetism on Venus , 2018, Earth and Planetary Science Letters.
[11] James Evans,et al. MONTE: the next generation of mission design and navigation software , 2018 .
[12] Seth Andrew Jacobson,et al. Formation, stratification, and mixing of the cores of Earth and Venus , 2017, 1710.01770.
[13] J. Renaud,et al. Increased Tidal Dissipation Using Advanced Rheological Models: Implications for Io and Tidally Active Exoplanets , 2017, 1707.06701.
[14] S. Smrekar,et al. Experimental and observational evidence for plume-induced subduction on Venus , 2017 .
[15] M. Beuthe. Tidal Love numbers of membrane worlds: Europa, Titan, and Co. , 2015, 1504.04574.
[16] A. Aitta. Venus’ internal structure, temperature and core composition , 2012 .
[17] Suzanne E. Smrekar,et al. Constraints on mantle plumes on Venus: Implications for volatile history , 2012 .
[18] B. Vermeersen,et al. Effects of low-viscous layers and a non-zero obliquity on surface stresses induced by diurnal tides and non-synchronous rotation: The case of Europa , 2011 .
[19] Véronique Dehant,et al. Geodesy constraints on the interior structure and composition of Mars , 2011 .
[20] R. Cooper,et al. A composite viscoelastic model for incorporating grain boundary sliding and transient diffusion creep; correlating creep and attenuation responses for materials with a fine grain size , 2010 .
[21] Gabriel Tobie,et al. Tidal dissipation within large icy satellites: Applications to Europa and Titan , 2005 .
[22] T. D. Moyer. Formulation for Observed and Computed Values of Deep Space Network Data Types for Navigation , 2003 .
[23] W. M. Kaula,et al. Theory of Satellite Geodesy: Applications of Satellites to Geodesy , 2000 .
[24] A. Konopliv,et al. Venus Gravity: 180th Degree and Order Model , 1999 .
[25] D. L. Anderson,et al. Preliminary reference earth model , 1981 .
[26] T. Gold,et al. Atmospheric tides and the 4-day circulation on Venus , 1971 .
[27] E. N. da C. Andrade,et al. Über das zähe Fließen in Metallen und verwandte Erscheinungen = On the viscous flow in metals, and allied phenomena , 1910 .
[28] B. Vermeersen,et al. Global Dynamics of the Earth , 2004 .
[29] B. Bertotti,et al. Physics of the Solar System , 2003 .
[30] A. Ingersoll,et al. Atmospheric tides and the rotation of Venus. I - Tidal theory and the balance of torques , 1980 .
[31] M. Saito. SOME PROBLEMS OF STATIC DEFORMATION OF THE EARTH , 1974 .