Constraining the Venus Interior Structure with Future VERITAS Measurements of the Gravitational Atmospheric Loading

The complex dynamics of the Venus atmosphere produces a periodic mass redistribution pattern that creates a time-variable modulation of the gravity field of Venus. This gravity signal depends on the net transport of mass across the globe and on the response of the solid body to the normal loading of its crust imparted by the atmosphere. In this work, we explore the possibility of measuring this phenomenon with VERITAS, a NASA Discovery-class mission. By simulating the gravity science experiment, we explore the possibility of measuring the response of Venus to the atmospheric loading, parametrized by the loading Love numbers ( kl′ ), and assess the dependence of these parameters on fundamental interior structure properties. Using the most recent models of Venus’ interior, we compute the Venus Love numbers in a compressible viscoelastic setting and compare them with the predicted uncertainty of the VERITAS measurements. We show that VERITAS will measure k2′ at the 4% level and that this measurement could possibly help to distinguish between different equally plausible interior structure models, especially allowing us to distinguish different rheological laws. We also show that a measurement campaign such as the VERITAS gravity science investigation has the potential of measuring k2′ not only at the loading forcing frequency, but also at the tidal frequency, ultimately providing a way to probe the response of the planet at different forcing periods.

[1]  J. Barriot,et al.  Possible Deep Structure and Composition of Venus With Respect to the Current Knowledge From Geodetic Data , 2021, Journal of Geophysical Research: Planets.

[2]  G. Tobie,et al.  Solid tides in Io’s partially molten interior , 2021, Astronomy & Astrophysics.

[3]  D. Campbell,et al.  Spin state and moment of inertia of Venus , 2021, Nature Astronomy.

[4]  A. Fienga,et al.  Gravity, Geodesy and Fundamental Physics with BepiColombo’s MORE Investigation , 2021 .

[5]  É. Bolmont,et al.  Solid tidal friction in multi-layer planets: Application to Earth, Venus, a Super Earth and the TRAPPIST-1 planets , 2020, Astronomy & Astrophysics.

[6]  G. Piccioni,et al.  Validation of the IPSL Venus GCM Thermal Structure with Venus Express Data , 2019, Atmosphere.

[7]  K. Gorski,et al.  Gravitational signatures of atmospheric thermal tides on Venus , 2019, Icarus.

[8]  S. Lebonnois,et al.  Latitudinal variation of clouds’ structure responsible for Venus’ cold collar , 2018, Icarus.

[9]  S. Werner,et al.  Inferences on the mantle viscosity structure and the post-overturn evolutionary state of Venus , 2018, Icarus.

[10]  P. Tackley,et al.  Prospects for an ancient dynamo and modern crustal remanent magnetism on Venus , 2018, Earth and Planetary Science Letters.

[11]  James Evans,et al.  MONTE: the next generation of mission design and navigation software , 2018 .

[12]  Seth Andrew Jacobson,et al.  Formation, stratification, and mixing of the cores of Earth and Venus , 2017, 1710.01770.

[13]  J. Renaud,et al.  Increased Tidal Dissipation Using Advanced Rheological Models: Implications for Io and Tidally Active Exoplanets , 2017, 1707.06701.

[14]  S. Smrekar,et al.  Experimental and observational evidence for plume-induced subduction on Venus , 2017 .

[15]  M. Beuthe Tidal Love numbers of membrane worlds: Europa, Titan, and Co. , 2015, 1504.04574.

[16]  A. Aitta Venus’ internal structure, temperature and core composition , 2012 .

[17]  Suzanne E. Smrekar,et al.  Constraints on mantle plumes on Venus: Implications for volatile history , 2012 .

[18]  B. Vermeersen,et al.  Effects of low-viscous layers and a non-zero obliquity on surface stresses induced by diurnal tides and non-synchronous rotation: The case of Europa , 2011 .

[19]  Véronique Dehant,et al.  Geodesy constraints on the interior structure and composition of Mars , 2011 .

[20]  R. Cooper,et al.  A composite viscoelastic model for incorporating grain boundary sliding and transient diffusion creep; correlating creep and attenuation responses for materials with a fine grain size , 2010 .

[21]  Gabriel Tobie,et al.  Tidal dissipation within large icy satellites: Applications to Europa and Titan , 2005 .

[22]  T. D. Moyer Formulation for Observed and Computed Values of Deep Space Network Data Types for Navigation , 2003 .

[23]  W. M. Kaula,et al.  Theory of Satellite Geodesy: Applications of Satellites to Geodesy , 2000 .

[24]  A. Konopliv,et al.  Venus Gravity: 180th Degree and Order Model , 1999 .

[25]  D. L. Anderson,et al.  Preliminary reference earth model , 1981 .

[26]  T. Gold,et al.  Atmospheric tides and the 4-day circulation on Venus , 1971 .

[27]  E. N. da C. Andrade,et al.  Über das zähe Fließen in Metallen und verwandte Erscheinungen = On the viscous flow in metals, and allied phenomena , 1910 .

[28]  B. Vermeersen,et al.  Global Dynamics of the Earth , 2004 .

[29]  B. Bertotti,et al.  Physics of the Solar System , 2003 .

[30]  A. Ingersoll,et al.  Atmospheric tides and the rotation of Venus. I - Tidal theory and the balance of torques , 1980 .

[31]  M. Saito SOME PROBLEMS OF STATIC DEFORMATION OF THE EARTH , 1974 .